Yohanna Yohanna, Mohammad Irham, Indra Gunawan, Anton Saryono, Yusuf Tawakal, Dewi Malia Prawiradilaga, Anik Budhi Dharmayanthi
| Abstract views: 406 | PDF views: 237


A bird strike refers to a collision between birds and a plane. This incident risks the flight because it could damage the aircraft and threaten airlines' safety. The airports have been implementing safety measures to prevent and minimise the risk of bird strikes, such as monitoring wildlife, habitat management, and using various types and techniques of bird deterrents. While monitoring birds will provide baseline data to estimate the level of risk for each species, it is vital to have data on birds directly involved in bird strikes; hence, the airport can determine more precisely which species have the most significant potential to cause bird strikes. Therefore, identifying the remains of birds from the aeroplane is essential as a safety measurement in bird strike management. In this study, we applied DNA barcoding using the cytochrome oxidase I barcode gene to identify the birds' remains. Samples consisting of three feathers and tissues collected from the plane were analysed. The Cytochrome Oxidase I sequence analysis showed that all six samples were identified as Haliaeetus leucogaster (White-bellied sea eagle) with percentage identity 100% after BLAST to NCBI. We also identified the feathers by comparing them with reference specimens, which showed that they came from wing feathers of H. leucogaster. We concluded that DNA barcoding could be used to identify the species of bird involved in bird strike incidents; therefore airport could incorporated DNA barcoding technique on their wildlife hazard management.


Barcoding, Bird strike, COI, White-bellied eagle

Full Text:



[AAWHG] Australian Aviation Wildlife Hazard Group. (2019). Wildlife strike and aviation. [online]. Accessed https://aawhg.org/ [15 October 2022].

Allan, D. J. R. (n.d.). (2000). A protocol for bird strike risk assessment at airports. 18. Article presented on International Bird Strike Committee, Amsterdam, 17-21 April 2000.

Allan, J. R., & Orosz, A. P. (2001). The costs of birdstrikes to commercial aviation. Bird Strike, 10. Article presented on Canada Third Joint Annual Meeting, Calgary, AB 2.

Boonyaprakob, U. (2019). Milvus migrans lineatus voucher KU607 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial. Retrieved December 27, 2022, from Milvus migrans lineatus voucher KU607 cytochrome oxidase subunit 1 (CO - Nucleotide - NCBI (nih.gov).

[CASA] Civil Aviation Safety Authority. Hazard identification and management in aviation [DCMIType]. Civil Aviation Safety Authority. [online]. Accessed https://www.casa.gov.au/operations-safety-and-

travel/safety-advice/hazard-identification-and-management-aviation [15 October 2022]

Dalton, D. L., Bruyn, M. D., Mwale, M., Kim, L., Hoffman, M., Froneman, A., Smit-Robinson, H. A., & Kotze. (2019). First Record of White Stork in a Birdstrike in South Africa Above 3,300 m AGL. Human–Wildlife Interactions, 13(1), 150–157.

Debus, S., & Kirwan, G. M. (2020). White-bellied Sea-Eagle (Haliaeetus leucogaster), version 1.0. In Birds of the World ( Hoyo J del, Elliott A, Sargatal J, Christie D A, and de Juana E, Editors) (Ithaca: Cornell Lab of Ornithology). https://doi.org/10.2173/bow.wbseag1.01

Dove, C. J., Rotzel, N. C., Heacker, M., & Weigt, L. A. (2008). Using DNA Bar-codes to Identify Bird Species Involved in Birdstrikes. Journal of Wildlife Management, 72(5), 1231–1236. https://doi.org/10.2193/2007-272.

Eaton, M. J., Meyers, G. L., Kolokotronis, S.-O., Leslie, M. S., Martin, A. P., & Amato, G. (2010). Barcoding bushmeat: Molecular identification of Central African and South American harvested vertebrates. Conservation Genetics: SPRINGER, 11(4), 1389–1404. https://doi.org/10.1007/s10592-009-9967-0

Fortońska, A. (2018). The impact of bird strikes on air transport safety. Scientific Journal of Silesian University of Technology, Series Transport, 98, 27–34. https://doi.org/10.20858/sjsutst.2018.98.3

Goldberg, T. L., Sibley, S. D., Pinkerton, M. E., Dunn, C. D., Long, L. J., White, L. C., Strom, S. M. (2019). Multidecade Mortality and a Homolog of Hepatitis C Virus in Bald Eagles (Haliaeetus leucocephalus), the National Bird of the USA. Sci Rep, 9, 1, 14953. doi: 10.1038/s41598-019-50580-8. PMID: 31628350; PMCID: PMC6802099.

Government of Canada. (2004). Sharing the skies: An aviation industry guide to the management of wildlife hazards (2nd ed). Ottawa: Transport Canada.

Hebert, P. D. N., Zemiak. T., Stoeckle M. Y., Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2, 1657-1663.

[IATA] International Air Traffic Association. (n.d.). Retrieved October 15, 2022, from https://www.iata.org/en/youandiata/travelers/aviation-safety/.

Johnsen, A., Rindal, E., Ericson, P.G.P., Zuccon, D., Kerr, K. C. R., Stoeckle, M. Y., Lifjeld, J. T. (2010). DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. Journal of Ornithology, 151, 565–578. https://doi.org/10.1007/s10336-009-0490-3.

Kumar, L., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 1-8.

Li, J., Cui, Y., Jiang, J., Yu, J., Niu, L., Deng, J., Shen, F., Zhang, L., Yue, B., & Li, J. (2017). Applying DNA barcoding to conservation practice: A case study of endangered birds and large mammals in China. Biodiversity And Conservation: SPRINGER, 26(3), 653–668. https://doi.org/10.1007/s10531-016-1263-y.

Luczon, A. U., Ong, P. S., Quilang, J., Fontanilla, I. K. C. 2010. Ichthyophaga ichthyaetus voucher PEF40 cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial. Retrieved December 27, 2022, from Ichthyophaga ichthyaetus voucher PEF42 cytochrome oxidase subunit 1 (C - Nucleotide - NCBI (nih.gov).

Mardiastuti, A. (2018). Ecology of birds in Pulau Rambut. Bogor: Department of Forest Resourches Conservation, Faculty of Forestry, Bogor Agricultural University and Nagao Natural Environment Foundation

Metz, I. C., Ellerbroek, J., Mühlhausen, T., Kügler, D., & Hoekstra, J. M. (2020). The Bird Strike Challenge. Aerospace, 7(3), 26. https://doi.org/10.3390/aerospace7030026

Ong, P.S., Luczon, A. U., Quilang, J. P., Sumaya, A. M., Ibañez, J. C., Salvador, D. J., Fontanilla, I. K. DNA barcodes of Philippine accipitrids. 2011. Molecular Ecology Resources, 11(2), 245-54. doi: 10.1111/j.1755-0998.2010.02928.x.

Speelman, R. J. III., Kelley, M. E., McCarty, R. E., & Short, J. J. (n.d.). (1999). Coping strategies for the aircraft birdstrike problem: resisting impacts, avoiding collisions. Article presented Bird Strike Committee-USA/Canada, First Joint Annual Meeting, Vancouver BC.

Suripto, B. A. & Hendri, N. (2018). The diurnal bird community in the vicinity of Adisutjipto International Airport Yogyakarta. AIP Conference Proceedings 2002. https://doi.org/10.1063/1.5050104

Waugh, J., Evans, M. W., Millar, C. D., & Lambert, D. M. (2011). Birdstrikes and barcoding: Can DNA methods help make the airways safer?. Molecular Ecology Resources, 11(1), 38–45. https://doi.org/10.1111/j.1755-0998.2010.02884.x

Yan, D., Luo, J. Y., Han, Y. M., Peng, C., Dong, X. P., Chen, S. L., Sun, L. G., & Xiao, X. H. (2013). Forensic DNA Barcoding and Bio-Response Studies of Animal Horn Products Used in Traditional Medicine. Public Library Science: Plos One, 8(2). https://doi.org/10.1371/journal.pone.0055854

Yang, R., Wu, X., Yan, P., & Li, X. (2010). Using DNA barcodes to identify a bird involved in a birdstrike at a Chinese airport. Molecular Biology Reports, 37(7), 3517–3523. https://doi.org/10.1007/s11033-009-9945-0.

Zein, M. S. A. (2018). Barkoding DNA burung elang famili accipitridae di Indonesia (DNA barcoding of the family accipitridae in Indonesia). Berita Biologi, 17, 2, 165-173.


  • There are currently no refbacks.