MODELING SHIFTING GEOGRAPHICAL DISTRIBUTIONS OF LEAST CONCERN ASIAN BRACKISH FROG FEJERVARYA CANCRIVORA (GRAVENHORST, 1829) (ANURA: DICROGLOSSIDAE) IN WEST JAVA, INDONESIA RELATED TO CMIP 5 RCP 8.5 CLIMATE CHANGE SCENARIO

Andri Wibowo, Adi Basukriadi, Erwin Nurdin, Vita Meylani, Nana Suryana Nasution
| Abstract views: 501 | PDF views: 282

Abstract

Amphibians and their geographical distribution are threatened by climate change, including species
in West Java, Indonesia. It is estimated that 300 amphibian species are threatened, including the family
Dicroglossidae. At the same time, information on how climate change impacts amphibian species in
Indonesia is very limited. This study aims to assess and model the suitable habitat for the least concern
Asian brackish frog, Fejervarya cancrivora (Gravenhorst, 1829), under the CMIP 5 RCP 8.5 future
climate change scenario by 2070, analyzed using Maximum Entropy (MaxEnt). The models developed
with MaxEnt showed good predictivity, with an AUC value of 0.701. The models that inform the
precipitation of the wettest month, isothermality, and mean diurnal range variables have significant
contributions to make in shaping F. cancrivora geographical distributions. The models confirm that F.
cancrivora had shifted its geographical distribution and had gained and lost habitats under a future climate
change scenario by 2070. F. cancrivora will lose 4,428 km2 of its current habitat and will gain 2,673
km2 of new habitat. In total, climate change will cause F. cancrivora to lose its habitat by 1,755 km2.

Keywords

amphibian, climate change, MaxEnt, precipitation, RCP

Full Text:

PDF

References

Akhsani, F., Muhammad, M., Sembiring, J., Putra, C.A., Alhadi, F. & Wibowo, R.H. 2021. Analisis ekologi relung katak Fejervarya, Dramaga, Jawa Barat: ditinjau dari waktu aktif makan. Jurnal Ilmu Hayat, 5(1).

Alves-Ferreira, G., Talora, D.C., Solé, M., Cervantes-López, M.J. & Heming, N.M. 2022, Unraveling global impacts of climate change on amphibians distributions: A life-history and biogeographic-based approach. Front. Ecol. Evol, 10:987237. doi: 10.3389/fevo.2022.987237

Araújo, M.B., & Peterson, A.T. 2012. Uses and misuses of bioclimatic envelope modeling. Ecology, 93,1527–1539. doi: 10.1890/11-1930.1

As’ary, M., Setiawan, Y. & Rinaldi, D. 2023. Analysis of changes in habitat suitability of the Javan Leopard (Panthera pardus melas, Cuvier 1809) on Java Island, 2000–2020. Diversity, 15, 529. doi: 10.3390/d15040529

Bivand, R.R. 2022. Packages for analyzing spatial data: a comparative case study with areal data. Geographical Analysis, 54. doi: 10.1111/gean.12319.

Chang, Y., Wu, C., Huang, Y., Sung, S. & Hwang, W. 2016. Occurrence and reproduction of anurans in brackish water in a coastal windbreak forest in Taiwan. Herpetology Notes, 9: 291–295.

Dervo, B.K., Bærum, K.M., Skurdal, J. & Museth, J. 2016. Effects of temperature and precipitation on breeding migrations of amphibian species in Southeastern Norway. Scientifica (Cairo).

Doulabian, S., Golian, S., Toosi, A.S. & Murphy, C. 2021. Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. Journal of Water and Climate Change,12(1): 166–184.

Dong, H., Zhang, N., Shen, S., Zhu, S., Fan, S. & Lu, Y. 2023. Effects of climate change on the spatial distribution of the threatened species Rhododendron purdomii in Qinling-Daba mountains of Central China: implications for conservation. Sustainability. 15(4), 3181. doi: 10.3390/SU15043181

Ellepola, G., Pie, M. R., Pethiyagoda, R., Hanken, J., & Meegaskumbura, M. 2022. The role of climate and islands in species diversification and reproductive-mode evolution of Old World tree frogs. Communications Biology, 5(1), 347. doi:10.1038/s42003-022-03292-1

Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. 2018. Using species distribution models at a local scale to guide poorly known species, review: methodological issues and future directions. Ecol. Model, 385: 124–132. doi: 10.1016/J.ECOLMODEL.2018.07.018

Frost, D.R. 2021. Amphibian Species of the World6.1, an Online Reference. American Museum of Natural History, New York, USA. doi: 10.5531/db.vz.0001.

Gravenhorst, J.L.C. 1829. Deliciae Musei Zoologici Vratislaviensis. Fasciculus primus. Chelonios et Batrachia. Leipzig: Leopold Voss.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., & Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 25: 1965–1978. doi: 10.1002/joc.1276

Hijmans, R.J., Guarino, L. & Mathur. P. DIVA-GIS version 7.5 Manual. 2012.

IPOC. 2008. Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Environ Policy Collect., 5(5): 399–406.

Khan, A.M., Li, Q., Saqib, Z., Khan, N., Habib, T., Khalid, N., Majeed, M. & Tariq, A. 2022. MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests, 13, 715. doi: 10.3390/f13050715

Khanum, R., Mumtaz, A, & Kumar, S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica, 49: 23–31. doi: 10.1016/j.actao.2013.02.007.

Kim, H.W., Adhikari, P., Chang, M.H. & Seo, C. 2021. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals (Basel), 11(8): 2185. doi: 10.3390/ani11082185.

Kusrini, M.D. 2013. Panduan Bergambar Identifikasi Amfibi Jawa Barat. Bogor: Pustaka Media Konservasi.

Kusrini, I. 2014. Perbandingan keanekaragaman dan sebaran spasial amfibi di Pulau Peucang dan Cidaon Taman Nasional Ujung Kulon. Skripsi IPB. Fakultas Kehutanan.

Kurniati, H. & Sulistyadi, E. 2017. Population density of Fejervarya cancrivora on paddy field in Karawang District, West Java. Jurnal Biologi Indonesia, 13(1): 71–83.

Kurniati, H. & Laksono, W.T. 2022. Population assessment of rice field frog (Fejervarya cancrivora) in paddy field area of Karawang Regency, West Java: survey results in 2016 and 2018. Jurnal Biologi Indonesia, 18(1): 19–29.

Lemenkova, P. 2020. Using R packages ‘Tmap’, ‘Raster’ And ‘Ggmap’ for cartographic visualization: an example of dem-based terrain modelling of Italy, Apennine Peninsula. Zbornik radova - Geografski fakultet Univerziteta u Beogradu 68, 99–116. 10.5937/zrgfub2068099L.

Mao, M., Chen, S., Ke, Z., Qian, Z. & Xu, Y. 2022. Using MaxEnt to predict the potential distribution of the little fire ant (Wasmannia auropunctata) in China. Insects, 13, 1008. doi: 10.3390/insects13111008.

Maulana, M.N., Hernawati, D. & Chaidir, D.M. 2023. Diversity of amfibia Ordo Anura in various habitats in the area of Mount Sawal Ciamis. ALKAUNIYAH: Jurnal Biologi, 16(1): 190–220.

Marcer, A., Sáe, L., Molowny-Horas, R., Pons, X. & Pino, J. 2013. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Cons. 166: 221–230. doi: 10.1016/J.BIOCON.2013.07.001.

Phadmacanty N.L.P.R. & Kurniati, H. 2019. Short Communication: Determination of the age of the paddy field frog, Fejervarya cancrivora (Anura: Dicroglossidae) by using skeletochronology. Biodiversitas, 20: 2739–2743.

Préau, C., Trochet, A., Bertrand, R. & Isselin-Nondedeu, F. 2018. Modeling potential distributions of three European amphibian species comparing ENFA and MaxEnt. Herpetological Conservation and Biology, 13(1).

Promnikorn, K., Jutamanee, K., Kraichak, E. 2019. MaxEnt model for predicting potential distribution of Vitex glabrata R.Br. in Thailand. Agr Nat Resour., 53: 44–48.

Rana, S.K., Rana, H.K., Ghimire, S.K., Shrestha, K.K. & Ranjitkar, S. 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. J Mt. Sci, 14(3), 558–570. doi: 10.1007/s11629-015-3822-1.

Reddy, M.T., Begum, H., Sunil, N., Pandravada, S.R. & Sivaraj, N. 2015. Assessing climate suitability for sustainable vegetable Roselle (Hibiscus sabdariffa var. sabdariffa L.) cultivation in India using MaxEnt. Agricultural and Biological Sciences Journal, 1(2): 62–70.

Riyanto, A. 2011. Herpetofaunal community structure and habitat associations in Gunung Ciremai National Park, West Java, Indonesia. Biodiversitas, 12: 38–44.

Riyanto, A. & Rahmadi, C. 2021. Amphibian and reptile diversity of Peleng Island, Banggai Kepulauan, Central Sulawesi, Indonesia. Biodiversitas, 22: 2930–2939.

Sánchez Pérez, M., Feria Arroyo, T.P., Venegas Barrera, C.S., Sosa-Gutiérrez, C., Torres, J., Brown, K.A. & Gordillo Pérez, G. 2023. Predicting the impact of climate change on the distribution of

Rhipicephalus sanguineus in the Americas. Sustainability, 15 4557. doi: 10.3390/SU15054557.

Shcheglovitova, M. &Anderson, R.P. 2013. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol. Model, 269: 9–17.

Song, D., Li, Z., Wang, T., Qi, Y., Han, H. & Chen, Z. 2023. Prediction of changes to the suitable distribution area of Fritillaria przewalskii Maxim. in the Qinghai-Tibet Plateau under shared Socioeconomic Pathways (SSPs). Sustainability, 15: 2833. doi: 10.3390/su15032833.

Stephenson, K., Wilson, B, Taylor, M, Mclaren, K, Veen, R, Kunna, J. & Campbell, J. 2022. Modelling climate change impacts on tropical dry forest fauna. Sustainability, 14(8): 10.3390/SU14084760

Hsu, W.T., Wu, C.S., Hatch, K.A., Chang, Y.M. & Kam, Y.C. 2017. Full compensation of growth in salt-tolerant tadpoles after release from salinity stress. Journal of Zoology, 304(2): 141–149.

Uetz, P., Freed, P. & Hosek, J. 2021. The reptile database. www.reptile-database.org

Ulak S., & Paudel, P. 2021. Maxent modelling for habitat suitability of vulnerable tree Dalbergia latifolia in Nepal. Silva Fennica, 55(4): 17. doi: 10.14214/sf.10441

Vilà, M., Gassó, N., Thuiller, W. & Pino, J. 2012. Potential distribution range of invasive plant species in Spain. NeoBiota, 12: 25–40.

Vuuren, D.P.V., Edmonds, J., Kainuma, M., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J. & Rose, S.K. 2009. The representative concentration pathways: an overview. Clim Change, 109:

–31. doi: 10.1007/s10584-011-0148-z.

Wei, B., Wang, R., Hou, K., Wang, X. & Wu, W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using Maxent model under climate change in China. Global Ecology and Conservation, 16.: e00477. doi: 10.1016/j.gecco.2018.e00477.

Weyant, J., Azar, C., Kainuma, M., Kejun, J., Nakicenovic, N., Shukla, P.R., La Rovere, E. & Yohe, G. 2009. Report of 2.6 Versus 2.9 Watts/m2 RCPP evaluation panel. Geneva: IPCC Secretariat; 2009.

Xie, C., Xiaoya, Y., Liu, D. & Fang, Y. 2020. Modelling suitable habitat and ecological characteristics of old trees using DIVA-GIS in Anhui Province, China. Polish Journal of Environmental Studies, 29. https://doi.org/10.15244/pjoes/110346.

Zakaria, N., Allahudin, M.I.H., Ma’ad, S.N.S., Sulaiman. A.A., Abdullah, N.A., Zamri, M.I.M., Mamat, M.A. & Deraman, MY. 2022. Diversity amphibians and reptiles at Sungai Kerteh mangrove forest, Terengganu, Malaysia. Biodiversitas, 23:5574–5584.

Zhao, W.L., Chen, H.G., Lin, L., Cui, Z.J. & Jin, L. 2018. Distribution of habitat suitability for different sources of Fritillariae cirrhosae bulbus. Chin. J. Ecol., 37: 1037–1042.

Zhao, C., Jiang, J., Xie, F., Li, C. & Zhao, T. 2022, Assessment of amphibians vulnerability to climate change in China. Front. Ecol. Evol., 10:826910. doi: 10.3389/fevo.2022.826910

Zhu, G.P., Gariepy, T.D., Haye, T. & Bu, W.J. 2017. Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe. J Pest Sci., 90: 1–13. https://doi.org/10.1007/s10340-016-0786-z.

Copyright (c) 2023 Andri Wibowo

Refbacks

  • There are currently no refbacks.