4) TREUBIA
 A JOURNAL ON ZOOLOGY
 OF THE INDO-AUSTRALIAN ARCHIPELAGO

Published by
RESEARCH CENTER FOR BIOLOGY
INDONESIAN INSTITUTE OF SCIENCES BOGOR, INDONESIA

TREUBIA

A JOURNAL ON ZOOLOGY OF THE INDO-AUSTRALIAN ARCHIPELAGO

Vol. 39, pp. 1-85, December 2012

Board of Editors:

Prof. Dr. Rosichon Ubaidillah, M.Phil. (Chief) Dr. Hari Sutrisno
Dr. Djunijanti Peggie, M.Sc.
Prof. Dr. Mulyadi Ir. Ristiyanti M. Marwoto, M.Si.
Dr. Daisy Wowor, M.Sc.
Dra. Renny K. Hadiaty

International Editors:

| Dr. Paul Bates MA PhD | Director Harrison Institute Bowerwood House 15 | |
| :--- | :--- | :--- | :--- | :--- |
| | Botolph's Road Sevenoaks, Kent, TN13 3AQ UK | |
| Dr. Thomas von Rintelen | Museum für Naturkunde Leibniz - Institut für | |
| | Evolutions und Biodiversitatsforschung an der | |
| | Humboldt-University zu Berlin, Invalidenstraße 43, | |
| Dr. Alan T. Hitch | 10115 Berlin, Germany | |
| | University of California, Davis, CA 95616 USA | |

Referees:

1. Dr. Lim Boo Liat Malaysian Natur 12, Jalan Koope Society Cuepacs 3E, Taman Cuepacs, Cheras, Selangor, Malaysia
Natural History Laboratory, Faculty Of Science, Ibaraki University, Mito, Ibaraki, Japan
2. Prof. Dr. Jun-ichi Kojima
3. Dr. Michael Braby

Proof Reader:
Department of Natural Resources, Environment, the Arts and Sport (NRETAS) Australia.

Dr. Dewi M. Prawiradilaga

Layout:

Sri Handayani
Managing Assistant:
Sri Wulan

Subscription and Exchange
RESEARCH CENTER FOR BIOLOGY
Jl. Raya Jakarta-Bogor Km 46 Cibinong-Bogor 16911-Indonesia
Email: treubia@gmail.com

SYSTEMATIC AND DESCRIPTION OF NEW SPECIES OF MAXOMYS (MURIDAE)

Anang Setiawan Achmadi ${ }^{1,2}$, Ibnu Maryanto ${ }^{2}$ and Maharadatunkamsi ${ }^{2}$
${ }^{1}$ Molecular Ecology Laboratory, Department of Zoology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300. Kota Samarahan, Sarawak
${ }^{2}$ Museum Zoologicum Bogoriense, Research Center for Biology
Indonesian Institute of Sciences. Jl. Raya Jakarta-Bogor Km. 46
fax:+6221-8765068; email address: gudelly@gmail.com

Abstract

We review the murid rodents of the genus Maxomys from Borneo, and recognise one new species, Maxomys tajuddinii sp. nov. The type locality is Empakuq village ($1^{\circ} 19^{\prime} 8.11^{\prime \prime} \mathrm{S}, 120^{\circ} 6^{\prime} 8^{\prime \prime} \mathrm{E}$), Melak District, Kutai, East Kalimantan, Indonesia. Descriptive and multivariate Analyses were used to reveal the variation and distinctive characters of this new species from its closest relatives. Results depicted that the morphology of new species M. tajuddinii sp. nov. resembles that of M. whiteheadi Thomas, 1894, which occurs throughout the Borneo island. Nine characters distinguish the new species: (1) sharp demarcation on the flanks between the dorsal and ventral pelage; (2) tail slightly similar to longer than head and body length, tapered and bicoloured, brownish black on dorsal surface and creamy white on ventral surface; (3) individual hairs covering head and body long, thick, and spinous, resulting in a dense pelage; (4) brownish orange buff dorsal pelage, with long, dense, spinous, black tipped guard hairs and creamy white ventral pelage; (5) rostrum long and narrow relative to overall skull size; (6) incisive foramina narrow relative to length, with posterior margins located slightly anterior to first molar; (7) first upper molar with three roots; (8) cusp t ${ }^{4}$ complete on first and second molars; and (9) $10-12$ scales per cm on tail. Morphologically, M. tajuddinii sp. nov. is unlike any other described species of Maxomys known to occur on Borneo. M. tajuddinii is the new species occurs in sympatry with M. whiteheadi Thomas, 1894 in peat swamp forests, logged mixed dipterocarp forests or waterlogged and periodically inundated sandy clay soil dominated by kerangas vegetation.

Keywords: description, new species, M. tajuddinii sp. nov., morphology, Borneo

INTRODUCTION

The mammalian fauna of Southeast Asia represents an excellent subject for investigating the interrelationships of diversity, species richness, species endemism, island area, and isolation. Many of the islands that lie south of Indochina, in western Indonesia, are merely highpoints on an immense shallow continental shelf known as the Sunda

Shelf (Heaney 1986). These islands were repeatedly connected by dry land in times of low sea level during and prior to the Pleistocene (Voris 2000). Thus, the islands of the Sunda Shelf potentially offer numerous opportunities for testing hypotheses of community assembly and diversification. Unfortunately, the region's potential as a model system for understanding evolutionary and ecological processes is limited by a lack of basic information on species limits and phylogenetic relationships in many groups of organisms.

As the largest island on the Sunda Shelf, Borneo has more endemic mammal species than any other islands in the region. However, despite long-term interest among biologists in Borneo's mammalian diversity, a general lack of information on species distributions and relationships suggests a need for further biodiversity inventories and systematic examinations of putative clades and species. All previous systematic reviews (eg. Corbet \& Hill 1992, Musser \& Carleton 2005), indicate large gaps in our knowledge of Borneo's mammalian biodiversity. Only the distributions of some primates (e.g., Pongo pygmaeus Linnaeus, 1760) are reasonably well documented (Rijksen \& Meijaard 1999).

Among Borneo's native mammals, murid rodents are especially diverse yet very poorly known. Twenty six species are currently recognised from the island, including 9 Bornean endemics (Payne et al. 1985, Corbet \& Hill 1992, Suyanto et al. 2002). For the genus Maxomys Sody, 1936, Borneo represents a center of both diversity and endemism with six of 14 species occurring on the island, three of them endemics. The Bornean Maxomys are relatively easy to identify using external characters of size and colour. For instance, the large species M. rajah Thomas, 1894 and M. surifer Miller, 1900 can be distinguished by their pelage colours, as can the medium species M. alticola Thomas, 1888 and M. ochraceiventer Thomas, 1894, and the small species M. whiteheadi Thomas, 1894 and M. baeodon Thomas, 1894. During an expedition to East Kalimantan in May 2006, eight individuals of Maxomys spp. were collected with body proportion and colour were not quite right with M. whiteheadi Thomas, 1894 and suspected as distinct species.

In the present study, we compared morphological characters between these new specimens and all extant species of Maxomys from Borneo. The results suggest that the new specimens warrant recognition as a new species, and we formally describe them as such.

MATERIAL AND METHODS

Study Area and Fieldwork

Surveys were conducted in Melak district, East Kalimantan from

Figure 1. Selected sites sampling in this study. 1. Kinabalu Park, Sabah; 2. Fraser's Hill forest reserve; 3. LEWS, Sarawak; 4. Niah National Park, Sarawak; 5. Melak district, East Kalimantan (adapted from Google Earth.com)

14 to 31 May 2006. Field surveys in Sarawak, Sabah and the Malay Peninsula were conducted from February to November 2008 (Table 1, Fig. 1).

Fifty to 100 cage traps and Sherman traps were deployed on each site for three to five nights. The traps were placed in a grid along forest trails with an inter-trap distance of 5 to 10 m . We used peanut butter, banana, oil palm fruits and salted fish as bait. Traps were checked twice daily, at about 6.30 am and 5 pm . Captured specimens were placed in cloth bags, measured using digital callipers (Mitutoyo ${ }^{\mathrm{TM}}$) and weighed using Pesola spring scales. Identification of specimens followed Corbet \& Hill (1992), Payne et al. (1985) and Francis (2008).

All captured mammals, except for voucher museum specimens were tagged prior to release. Nearly all of the comparative materials consist of standard museum preparations: a stuffed skin and accompanying cranium and mandible. A few samples were preserved in formalin and are currently stored in a 70% ethanol. The whole samples of the new rat were preserved in 5% formalin for 4 to 5 days and subsequently transferred to 70% ethanol solution for permanent storage.

Morphological Data and Analyses

Values (in millimeters) for head and body length (HB), tail length (TL), hind foot length (HF), and ear length were taken from fresh specimens. The following cranial and dental dimensions (Fig. 2, following Musser (1991), Musser \& Newcomb (1983) and Musser et al. (2005)) were measured on adult specimens (determined by molar wears on the

Figure 2. Views of cranium and molars showing limits of cranial and dental measurements. See text for abbreviations and additional information. (adapted and modified from Musser 1991)
occlusal surface) using digital calipers accurate to the nearest 0.1 mm : Greatest Skull Length (GSL), Post Orbital Breadth (POW), Zygomatic Breadth (ZB), Zygomatic Plate (ZP), Inter Orbital Breadth (IOB), Nasal Length (NL), Nasal Width (NW), Braincase Width (BW), Height of Braincase (HB), Diastema (D), Palatal Length (PL), Upper Molar Row (UMR), Incisive Foramina Length (IFL), Incisive Foramina Breadth (IFB), Molar 1Width (M1W), Molar 2 Width (M2W), Molar 3 Width (M3W), Molar 1 to Molar 1 (M1M1), Molar 2 to Molar 2 (M2M2), Molar 3 to Molar 3 (M3M3), Bulla Tymphani Length (BL), Meso Pterygoid Width (MPW), Ramus Angular Process (RAP), Dental Length (DL).

We calculated standard descriptive statistics (mean, standard deviation and range) for each measurement. Anatomical terminology follows Musser (1991), Musser \& Newcomb (1983) and Musser et al. (2005). We employed multivariate statistical analyses to understand the nature and distribution of morphometric variation. These included for Principal Component Analysis (PCA) by correlation matrix and Discriminant Function Analysis (DFA).

RESULTS

On the basis of the distribution of morphological variation detected in specimens of Bornean Maxomys, we compare the definition of M. whiteheadi and describe one new species. The following systematics section describes the differences between the geographic groups of M. tajuddinii sp. nov. to facilitate the identification and classification of its distinctness.

SYSTEMATICS

Maxomys whiteheadi Thomas, 1894
Holotype
British Museum of Natural History, no number, 18 March 1888.
Type Locality
Mount Kinabalu, North Borneo, 3000 ft .
Diagnosis
Thomas (1894) described M. whiteheadi as small size spiny rat, with hindfoot length approximately 27 mm , length of tail similar to head and body length, nearly naked and bicolour, fur spiny, rufous above, with tips of spines wholly brown, black, or ochraceous, with bases slaty, but not sharply defined, hands and feet white, soles slate, mammae formula $2+2$ $=8$, bullae small, and palatal foramina short.

Distribution
Borneo Island and adjacent, small islands, namely Serasan Island, Natuna and Sumatera. Also present on the Malay Peninsula, possibly extending N of the Isthmus of Kra into Thailand (Corbet \& Hill 1992, van Strien 2006).

Maxomys tajuddinii sp. nov.
Holotype
Museum Zoologicum Bogoriense (MZB) 29080 (MW field number 307); an adult male, weight 66 g .; ethanol preserved (70\%) whole body, with skull and dentary removed and cleaned. The specimen was originally fixed in 5% formalin and preserved in 70% ethanol, collected by A. S. Achmadi and I. Maryanto on 22 May 2006 from peat swamp forest area, in logged, mixed dipterocarp forest on waterlogged, periodically inundated sandy clay.

Type Locality

One kilometer west of Empakuq village, ca. 10 km toward Melak town, Kutai district ($1^{\circ} 19^{\prime} 8.11^{\prime \prime} \mathrm{S}, 120^{\circ} 6^{\prime} 8^{\prime \prime}$ E), East Kalimantan, Indonesia.

Paratypes:
There are 11 adult males and 9 adult females.
Six adult females and one adult male were collected from the same locality with the holotype, by A. S. Achmadi and I. Maryanto: MZB 29058, 29062, 29066 collected on 26 May 2006 with weight respectively $57 \mathrm{~g}, 62 \mathrm{~g}, 50 \mathrm{~g} . ;$ MZB 29068, 29070 collected on 28 May 2006 with weight respectively 70 g , and 62 g .; MZB 29086 collected on 24 May

2006 with weight 65 g ; and one adult male: MZB 29077 collected on 22 May 2006 with weight 52 g. Two adult males were collected from Fraser Hill Forest Reserve (TK153703 and TK153717) on 10 July 2008 with weight 70 and 85 g . Seven adult males and two adult females were collected from Sumatera (MZB 28960 - 28968) by Maharadatunkamsi between 2 - 11 January 2007 (see Appendix 1) with weights 73, 74, 67, NA, 57, 87, 84, 121 and 85 gs. A male (no. 471) was collected from Balambangan Island (Sabah) and a female (no.1618) was collected from Jambusan cave (Sarawak) without field labels and catalog so measurements were not recorded. All skulls and dentaries were separated, carcasses fixed in 5% formalin and preserved in 70% ethanol.

Etymology
The new species is named after Professor Dr. Mohd. Tajuddin Abdullah, who is commonly known as Mr. T or Taj. Dr. Tajuddin has dedicated most of his life to the study of mammalian ecology, biogeography, phylogenetics, phylogeography, and conservation using classical and molecular genetic approaches in the Sunda region. As a biology lecturer, he has inspired many students to enter research careers. The authors are extremely pleased to honor him by attaching his name to this new species.

Diagnosis

M. tajuddinii sp. nov. distinguished from any other species in Maxomys Sody, 1936 by the following combination of traits: (1) sharp demarcation between dorsal and ventral surface on the flanks; (2) tail slightly similar to longer than head and body length, tapered and bicoloured, brownish black in dorsal surface and creamy white colour in ventral surface; (3) fur covering head and body long and thick, spinous, and dense; (4) brownish orange buff upperparts, creamy white underparts, long and dense guard hair, spinous with black on the tips; (5) rostrum long and narrow relative to its length; (6) incisive foramina narrow relative to its length, its posterior margins located slightly in front of first molar or not quite reaching to the level of front side of first molars; (7) first upper molar with three roots; (8) cusp t^{4} complete on first and second molars; (9) scales of tail among $10-12$ scales per cm .

Descriptions. Details of external, cranial, dental traits and pelage are described below. M. tajuddinii sp. nov. is a moderately medium size of spiny rats, it has average body size, weight ranges from $50-70 \mathrm{~g}$. The dense fur covering the upperparts of the head and body is brownish orange buff until in front of rump and dark brown for the rest comprising three types of hairs. The underfurs are thin, soft and gray for their entire length. The overfur layer is formed by wide, flexible and spinous, basal
half of each is gray and the half of its length is orange to brownish orange and buff on the tip. Guard hairs are scattered throughout the coat, beyond the overhairs, the basal half of each is grey and half of distal black or brown and spiny. Banding patterns of the different hairs combine in the dorsal coat to produce an overall brownish orange buff extending from nose to in front of rump, covering thighs and shoulders, and dark brown for the rest.

The ventral coat is shorter than fur covering the upperparts and formed by two kinds of hairs. The underfur hairs are gray for most of their lengths and have silvery or white tips. Hairs comprising the overfur are gray for most of their length and solid creamy white along the distal. Banding patterns of combination in the ventral coat as an overall whitish gray extends from chin to base of tail and undersides of limbs. Most important traits of M. tajuddinii sp. nov. regarding to coat is sharp demarcation in tone between dorsal and ventral fur extends from chin to base of tail (Fig. 3).

Eyes are relative small compare to head area, narrow, circular, with dark brown ring around. Eyelids are dark brown. Mystacial, submental, superciliary, genal, and interramal vibrissae as armory of sensory hairs also present in this species. The mystacial vibrissae are either dark brown or brownish black, fine, and very long. The longest in each pair of superciliary vibrissae barely extend past the pinnae. The submental and interramal vibrissae are short and unpigmented. The few short genal vibrissae are dark brown for most of their lengths. The pinnae (external ears) are small, and relatively disproportionate to body size. Each is dark brown, oval in outline, and rubbery in texture. Short and soft brown hairs (visible under magnification) are sparsely over both outer and inner surfaces.

Figure 3. Sharp demarcation between dorsal and ventral coat of M. tajuddinii sp. nov. showed by arrows in the flanks; A. Live sample (TK153717) B. Dead and dried specimen (holotype)

The slim, tapered tail is either similar or slightly longer than the length of head and the body, and round in cross-section. The dorsal and lateral surfaces are brownish black (produced by either brown or black pigment in scales and the bristles emerging from them); the ventral surface is creamy white or unpigmented from base to tip. There are 10 to 12 overlapping rings per centimeter on each adult tail and three hairs arise from the base of each epidermal tail scale. The mammae of female identified has four pairs $(2+2)$ of mammae; one pectoral, on postaxillary, and two inguinal.

Skull. Maxomys tajuddinii sp. nov. has an elongate, gracile skull, wide rostrum, and wide and rounded braincase. The outlines of rostrum is moderately long and wide, its sides gradually tapering towards the anterior end. Anterior margin of the nasal is sharply convex, and posteriorly the adjacent premaxillaries project appreciably beyond the nasal-frontal suture and give the distal portion of the rostrum a pointed configuration. Dorsal portion of each lacrimal bone is small, rectangular, and fused with dorsal maxillary zygomatic root and no shared suture with the frontal. Thin capsular walls of the nasolacrimal foramina bulge slightly on sides of the rostrum anterior to the zygomatic plates. Posterior to each capsule is the shallow outline of a zygomatic notch, which reflects a short anterior spine. Dorsolateral margins of the interorbital are defined by wide and high ridges that sweep back along dorsolateral postorbital margins of the frontals and onto the parietals (as temporal ridges) where they diminish in prominence only near the exoccipital-parietal suture (Fig. 4).

The outline of the sturdy rostrum is broken only by slightly swollen nasolacrimal capsules and infraorbital fissure. The diastemal region is breached by long and narrow incisive foramina. The posterior margins of these openings are either slightly to the anterior of front faces of the first molar or even front faces of them. The outline of incisive foramina is long and narrow relative to its length, their posterior margins located slightly in front of first molar or not quite reaching to the level of front side of first molars. The bony palate is wide, partly a reflection of the toothrows that diverge posteriorly. The palate is perforated by a pair of posterior palatine foramina opposite the union of second and third molars. A broad mesopterygoid fossa is situated posterior to the bony palate; its dorsoventral walls are breached by sphenopalatine vacuities. The postpalatal region (from the posterior margin of the bony palate to the ventral lip of the foramen magnum) is short relative to palatal length. Sides of the braincase are nearly vertical from the temporal beading to squamosal roots of the zygomatic arches. The zygomata are sturdy and project slightly laterally to connect braincase and rostrum in two parallel

Figure 4. View (x 1) of cranium and dentary of the holotype M. tajuddinii sp. nov. (MZB 29080) from East Kalimantan
bony strands. The bullar capsules are small relative to braincase breadth and cranial expanse and can be appreciated in the lateral view of the cranium.

Each dentary of M. tajuddinii sp. nov. appears sturdy, and composed by small and delicate coronoid process as in other species of Maxomys Sody, 1936 (Musser 1981, Musser et al. 1979). The incisors appear sturdy, enamel faces of upper and lower molars are smooth, without grooves, dark orange on uppers and pale orange on lowers incisors. The uppers are moderately short and curve caudad after emerging from the rostrum (opisthodont conformation). The lowers are moderately long and curved, their cutting tips slightly curved. The pattern of molar roots in the sample of M. tajuddinii sp. nov. is simple and primitive for murids (Musser \& Newcomb 1983). The molars of this species are robust, wide, and low-crowned (brachyodont). Within the upper rows, the first tooth inclines slightly against the anterior margin of the second, and it leans against the third. Within the lower row, the third molar leans slightly against the second, and that tooth rests on the first. The cusps of all the molars are situated closely adjacent to one another.

The occlusal surfaces of the brachyodont (low-crowned) molars are simple in topography. Coronal patterns of the molars are primarily consisting of laminae and cusps. The first upper molar consists of two anterior rows of cusps, each in the form of a broad and large chevron, somewhat diamond-shaped posterior surface. The anterior chevron of first uppermolar is comprised of cusps t^{1}, t^{2}, and t^{3}, coalesced one to each other, so that their limits are obliterated, especially for adults. A large cusp of t^{1}, single chevron, and coalesced with posterior mass of cusps t^{8}
and t^{9} at each second and third upper molar. The small third upper molar consists of a large oblong cusp t^{1} and chunky posterior surface, which primarily consists of cusp t^{8} merged cusp t^{9} to form distorted diamondshaped chewing surface. The occlusal pattern of third upper molar is basically compacted form of that characterizing the second upper molar; a conspicuous cusp t^{1}, no cusp t^{3}, and small posterior oblong chunk (Fig. 5). A cusp of t^{7} is difficult to detect in all uppermolar, and its possibilities not present in this species.

The lower molars are relatively long compared to the length of mandibulary skull; sturdy and exhibit uncomplicated patterns. The occlusal surfaces of the first lower molars consist of an oblong anteroconid comprised by the fusion of anterolabial and anterolingual cusps, and behind two chevron-shaped laminae represent fusions of protoconid-metaconid and hypoconid-entoconid respectively, and rounded or oval posterior cingulum plastered against the back margin of the second lamina. Except for lacking a complete anteroconid, occlusal cusp patterns of the second lower molar resemble patterns as seen in the first. An anterior lamina and either round or oblong, large posterior cusp are the simple elements of the third lower molar. A front chevron formed by union of protoconid and metaconid, behind that a large round to oblong structure representing the complete fusion of hypoconid and entoconid. There are difficulties on determining the frequency of accessory cusps and cusplets within lower molars in this species.

Figure 5. Occlusal view (approximately x 10) of adult upper and lower molars in species of M. tajuddinii sp. nov. From left to right; A. Uppermolars of MZB 29080 (Holotype); B. Uppermolars of TK153717 (Malay peninsular); C. Lower molars of MZB 29080 (Holotype); Lowermolars of TK153717 (Malay peninsular)

Distribution and Habitat
Since the first expedition conducted in Melak, Kutai, East Kalimantan and collected the interesting specimens, the following surveys revealed the range of M. tajuddinii sp. nov. distributions. The surveys showed that M. tajuddinii sp. nov. occurs not only in Kalimantan, but also appears in several places such as Sarawak (Kubah National Park) and Malay peninsular (Fraser's Hill Forest Reserve). From the Museum samples either Museum Zoologicum Bogoriense and Museum Zoological UNIMAS, we also found the specimens of M. tajuddinii sp. nov. collected from Sumatera, Jambusan Cave (Sarawak) and Balambangan Island (Sabah). The measurements and traits were taken and characterised; then included to analyses.

Provisionally M. tajuddinii sp. nov. has wide range of distributions starting from Kalimantan, Sarawak, Sabah, Malay peninsular and Sumatera Island which provide different type of habitats. The holotype and some of the paratypes were collected and sympatric to M. whiteheadi Thomas, 1894 at logged mixed dipterocarp forest on waterlogged, periodically inundated sandy clay soil and on medium brown clay forest and swamp forest. The habitats at Kubah National Park and Fraser's Hill Forest Reserve are mostly mixed dipterocarp forests with lower kerangas, which are highlands and quite different from Melak (lowland forest).

DISCUSSION

Differential Diagnosis

M. tajuddinii sp. nov. is readily diagnosed by the following characters and combinations which will distinguish this species with samples from any other species of Maxomys. In body conformation, limb and tail proportions and general morphology of skull and dentition, this species most closely resembles species of M. whiteheadi Thomas, 1894. Certain diagnostic traits are especially distinctive. M. tajuddinii sp. nov. has a larger body than M. whiteheadi Thomas, 1894 and its fur colour is also quite different especially for ventral coat and sharp demarcation between dorsal and ventral surfaces on the flanks. Compared directly to the measurements of M. whiteheadi Thomas, 1894 from Museum Zoologicum Bogoriense and the original description by Thomas (1894), it appears clearly different. The comparisons with descriptions by Corbet \& Hill (1992) appears slightly different because they provided a provisional diagnosis and contents of Maxomys complex, but their exposition was intended to be a working hypothesis, not a systematic revision in detail (Table 2).

The following traits and measurements are the comparisons between M. tajuddinii sp. nov. and M. whiteheadi Thomas, 1894: head and body lengths respectively are $106.84 \mathrm{~mm}(95.36-121.5 \mathrm{~mm})$ and $101.18 \mathrm{~mm}(91.2-111.08 \mathrm{~mm})$; tail length $113.89 \mathrm{~mm}(106.9-122.3 \mathrm{~mm})$ and 101.71 ($94.77-107.17 \mathrm{~mm}$); hind foot length $28.64 \mathrm{~mm}(27.62-30.04$ mm) and 24.76 (23.49-25.92 mm); greatest scale length 36.38 mm (34.1939.71 mm) and $32.4 \mathrm{~mm}(29.08-35.13 \mathrm{~mm})$; zygomatic breadth 16.35 mm (15.31-18.21 mm) and 14.75 mm (13.31-15.92 mm); zygomatic plate length $3.22 \mathrm{~mm}(2.79-3.72 \mathrm{~mm})$; upper molar row 5.89 mm (5.23-6.44 mm); incisive foramina length $5.18 \mathrm{~mm}(4.52-5.94 \mathrm{~mm})$; diastema 9.36 mm (8.17-10.93 mm); and nasal length $12.29 \mathrm{~mm}(11.20-13.83 \mathrm{~mm})$ and $10.86 \mathrm{~mm}(9.12-12.36 \mathrm{~mm})$. There is sharp demarcation between dorsal and ventral coat which does not appear in M. whiteheadi Thomas, 1894; and also the distinctive creamy white colour on ventral fur. A shorter tail percentage ($90-100 \%$) seemed distinct from M. whiteheadi Thomas, 1894 (105-120 \%).

The skull of M. tajuddinii sp . nov. is larger in size than M. whiteheadi Thomas, 1894 due to greatest scale length. Other skull characters also exhibit that this species is larger in range either breadth or length on each trait as show in Table 3. The molar size of M. tajuddinii sp. nov. is slightly larger than the other one.

Crania and dentaries of the two species are in contrast as seen in Figs. 6-8. Absolute size is an obvious distinguishing trait but other differences exist. The significant differences and seen apparently in the illustrations are rostrum longer and wider than M. whiteheadi Thomas, 1894 relative to its length; wide and high ridges bordering the postorbital region that sweep back along dorsolateral postorbital margins of the frontals and onto the parietals (as temporal ridges) where they diminish in prominence only near the exoccipital-parietal suture; and longer and wider bony palate than M. whiteheadi Thomas, 1894. Molar occlusal patterns of the two species are closely similar.

Multivariate Analyses

Discriminant Function Analysis or DFA was carried out to distinguish and strengthen the descriptive analyses as mentioned earlier that the morphology of M. tajuddinii sp. nov. and M. whiteheadi Thomas, 1894 are clearly distinct. Cranial, dentary and dental measurements were analysed, and in addition the skull measurements of M. ochraceiventer Thomas, 1894 and M. baeodon Thomas, 1894 also analysed and compared directly to M. tajuddinii sp. nov. as supporting data.

The number of data sets are too large, and to avoid over fitting the data, which is inherent on analysing of large characters data sets in DFA,

Figure 6. Lateral view (x 1) of head skulls showing differences between M. tajuddinii sp. nov. (A \& C; holotype; MZB 29080) and M. whiteheadi Thomas, 1894 (B \& D; MZB 18365)

Figure 7. Dorsal view (x 2) comparing adult crania of species Maxomys. From left to right; A. M. tajuddinii sp. nov (TK153703); B. M. tajuddinii sp. nov (MZB 29080, Holotype); C. M. whiteheadi Thomas, 1894 (MZB 14749); D. M. whiteheadi Thomas, 1894 (MZB 18365)

Figure 8. Ventral view (x 2) comparing adult crania of species Maxomys. From left to right; A. M. tajuddinii sp. nov (TK153703); B. M. tajuddinii sp. nov (MZB 29080, Holotype); C. M. whiteheadi Thomas, 1894 (MZB 14749); D. M. whiteheadi Thomas, 1894 (MZB 18365)
the data sets of skull characters are reduced to subsets of three characters. These selected skull characters are braincase breadth (BB), palatal length (PL) and ramus angular process (RAP) (Table 4). These characters are selected to minimise the value of Wilks' lambda. All selected skull characters are important in the discriminant function and their coefficient values load heavily (>0.5) on Function 1. The test functions of the skull, dentary, and dental characters have significant influence ($\mathrm{P}<0.001, \mathrm{df}: 3$), with cumulative canonical correlation between the two species of 100%. Furthermore, the number of functions at group centroids between skull, dental and dentary characters of M. tajuddinii sp. nov. and M. whiteheadi Thomas, 1894 are 3.184 and -0.672 . The plots of function 1 and the frequency indicate that the three skull, dental, dentary characters resulting 100% distinctness between the two species (Fig. 9 and Table 5).

Figure 9. Plot of a number of function 1 and frequency of variables skull measurements from (1) M.whiteheadi Thomas, 1894 and (2) M. tajuddinii sp. nov.

Table 5. Classification results of Discriminant Function Analyses between M. tajuddinii sp. nov. and M. whiteheadi Thomas, 1894

		No. of Cases	Predicted Group Membership	
	Actual Group		$\mathbf{1}$	$\mathbf{2}$
1	M. whiteheadi			90
			100%	0
2	M. tajuddinii sp.nov	19	0	0%
			0%	19

Discriminant function analyses of full characters data sets either between M. tajuddinii sp. nov. and M. baeodon Thomas, 1894 or M. tajuddinii sp. nov. and M. ochraceiventer Thomas, 1894 resulting significant influence with cumulative canonical correlation between the two species of $100 \%(\mathrm{P}<0.001$, df : 1 with M. baeodon Thomas, 1894 and $\mathrm{P}<0.001$, df : 1 with M. ochraceiventer Thomas, 1894). The number of functions at group centroids between skull, dental and dentary characters of M. tajuddinii sp. nov. and M. baeodon Thomas, 1894 are 1.015 and -3.551 ; and number of functions at group centroids between skull, dental and dentary characters of M. tajuddinii sp. nov. and M. ochraceiventer Thomas, 1894 are 2.273 and -0.325 . The plots of function 1 and the frequency indicated that the skull, dental, dentary characters 100% separated between the two species of M. tajuddinii sp. nov. with either M. baeodon Thomas, 1894 or M. ochraceiventer Thomas, 1894 (Figs. 10, 11 and Table 6, 7).

Figure 10. Plot of a number of function 1 and frequency of variables skull measurements from (1) M. tajuddinii sp. nov. and (2) M. baeodon

Figure 11. Plot of a number of function 1 and frequency of variables skull measurements from (1) M. tajuddinii sp. nov. and (2) M. ochraceiventer Thomas, 1894

Table 6. Classification results of Discriminant Function Analyses between M. tajuddinii sp. nov. and M. baeodon

	Actual Group	No. of Cases	Predicted Group Membership	
			$\mathbf{1}$	$\mathbf{2}$
M. tajuddinii sp.nov	21	21	0	
			100%	0%
			0	6

Percent of "grouped" cases correctly classified : 100 \%

Scatter plots of skull characters show that the palatal length of M. tajuddinii sp. nov. is generally larger relative to molar 1 to molar 1 , width of molar 1, ramus angular process and post orbital width of M. whiteheadi (Fig. 12). Similar evidence occurs for character of ramus angular process which larger relative to molar 1 to molar 1 , width of molar 1 and post orbital width of M. whiteheadi (Fig. 13).

Figure 12. Bivariate plots of : a. palatal length against molar 1 to molar 1; b. palatal length against molar 1 width; c. palatal length against ramus angular process and d. palatal length against post orbital width. (1) M. whiteheadi; (2). M. tajuddinii sp. nov.

Figure 13. Bivariate plots of : a. ramus angular process against molar 1 to molar 1; b. ramus angular process against molar 1 width and c . ramus angular process against post orbital width. (1) M. whiteheadi; (2). M. tajuddinii sp. nov.

ACKNOWLEDGMENT

We are most grateful to Prof. Dr. Mohd. Tajuddin Abdullah, the leader of two grants from the Ministry of Higher Education-FRGS grant number 06(08)6602007 and UNIMAS Eco-Zoonosis Grant (ZRC/03/2007(03). We would like to thank UNIMAS for granting the Zamalah (Scholarship) UNIMAS 2008/10 and Gary Paoli as fieldwork leader in East Kalimantan; BHP Billiton for supporting fieldwork in East Kalimantan. We also thank the Academy of Sciences Malaysia (ASM) and Sarawak Forestry Corporation (SFC) for supporting fieldwork in Lanjak Entimau Wildlife Sanctuary (LEWS); Museum Zoologicum

Bogoriense (MZB) and Universiti Malaysia Sarawak (UNIMAS) for providing samples, support and facilities; all MZB and UNIMAS technicians and laboratory assistants for assisting in fieldwork and laboratory; Jacob A. Esselstyn, James L. Patton and Kevin C. Rowe for their comments.

REFERENCES

Corbet, G.B. \& J.E. Hill, 1992. The mammals of the Indomalayan region: A systematic review. Oxford University Press, Oxford, 488 pp.
Francis, C., 2008. A guide to the mammals of Southeast Asia. Princeton University Press, Princeton, 392 pp.
Heaney, L.R., 1986. Biogeography of mammals in Southeast Asia: estimate of rates of colonisation, extinction and speciation. Biological Journal of the Linnean Society 28: 127-165.
Miller, G.S., 1900. Mammals collected on islands in South China Sea. Proceedings Washington Academic Science 2: 203-246.
Musser, G.G., 1981. Results of the Archbold Expeditions. No. 105. Notes on the systematics of Indo Malayan murid rodents, and descriptions of new genera and species from Ceylon, Sulawesi, and the Philippines. Bulletin of American Museum of Natural History 168: 225-334.
Musser, G.G., 1991. Sulawesi Rodents: Descriptions of New Species of Bunomys and Maxomys (Muridae, Murinae). American Museum Novitates 3001, 41 pp. American Museum of Natural History, New York.
Musser, G.G. \& C. Newcomb, 1983. Malaysian murids and the giant rat of Sumatra. Bulletin of the American Museum of Natural History 174: 327 598.

Musser, G.G. \& M.D. Carleton, 2005. Family Muridae, Rodentia. In: Wilson, D.E. \& D.M. Reeder (eds). Mammals Species of the World: A Taxonomic and Geographic Reference, Smithsonian Institution Press, Washington D.C, 1189-1531.

Musser, G.G, A.L. Smith, M.F. Robinson \& D.P. Lunde, 2005. Description of a New Genus and Species of Rodent (Murinae, Muridae, Rodentia) from the Khammouan Limestone National Biodiversity Conservation Area in Lao PDR. American Museum Novitates, American Museum of Natural History, 31 pp.
Musser, G.G., J.T. Marshall, Jr. \& Boeadi, 1979. Definition and contents of the Sundaic genus Mavomys (Rodentia, Muridae). Journal of Mammalogv 60: 592-606.
Payne, J., C.M. Francis \& K. Philipps, 1985. A Field Guide to the Mammals of Borneo. Sabah Society and World Wildlife Fund, Kota Kinabalu, 1-332 pp.
Rijksen, H.D. \& E. Meijaard, 1999. Our Vanishing Relative: The Status of Wild Orang-utans at the Close of the Twentieth Century. Kluwer Academic Publishers, Dordrecht, 1-478 pp.

Suyanto, A., Yoneda, M., Maryanto, I., Maharadatunkamsi \& Sugardjito, J., 2002. Checklist of the Mammals of Indonesia; Scientific Names and Distribution Area Tables in Indonesia Including CITES, IUCN and Indonesian Categories for Conservation. Lembaga Ilmu Pengetahuan Indonesia-Japan International Cooperation Agency, Bogor, 1-63 pp.
Thomas, O., 1888. Diagnoses of four new mammals from the Malayan region. Annales Magazine Natural History 2: 407-409.
Thomas, O., 1894. A preliminary revision of the Bornean species of the genus Mus. Annales Magazine Natural History 14: 449-460.
Voris, H.K., 2000. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems, and time durations. Journal of Biogeography 27: 1153 1167.

Table 1. The selected sampling sites, date of visits and habitat type in Borneo island

No	Sampling Locality	GPS Reading	Date	Habitat Type
1	Kinabalu Park, Sabah	$\begin{aligned} & \text { N } 06^{0} 00^{\prime} 27^{\prime \prime} \\ & \text { E } 116^{\circ} 33^{\prime} 05^{\prime \prime} \end{aligned}$	13-26 February 2008	Mixed dipterocarp and sub-montane forest
2	Fraser's Hill Forest reserve	$\begin{aligned} & \text { N } 03^{\circ} 42^{\prime} 57^{\prime \prime} \\ & \text { E } 101^{\circ} 44^{\prime} 23^{\prime \prime} \end{aligned}$	8-12 July 2008	Mixed dipterocarp forest
3	Lanjak Entimau Wildlife Sanctuary	$\begin{aligned} & \text { N } 01^{\circ} 00^{\prime} 22^{\prime \prime} \\ & \text { E } 112^{\circ} 00^{\prime} 07^{\prime \prime} \end{aligned}$	14-26 June 2008	Mixed dipterocarp forest, Kerangas
4	Niah National Park	N $3^{\circ} 47^{\prime} 54 "$ E 1130${ }^{\circ} 6^{\prime} 54^{\prime \prime}$	2-7 August and 14-20 November 2008	Mixed dipterocarp forest, Kerangas
5	Melak, Kutai Barat, East Kalimantan	$\begin{aligned} & \text { S } 0^{\circ} 16^{\prime} 53^{\prime \prime} \\ & \text { E } 115^{\circ} 51^{\prime} 21^{\prime \prime} \end{aligned}$	14-30 May 2006	Mixed dipterocarp forest, Kerangas

Table 2. Comparisons of selected traits and measurements between M. tajuddinii sp. nov. and M. whiteheadi Thomas, 1894

	M. tajuddinii sp. nov.	Maxomys whiteheadi		
		Present Study	Thomas (1894)	Corbet and Hill (1992)
Head and Body Length (mm)	$\begin{gathered} 106.84 \\ (95.36-121.5) \end{gathered}$	$\begin{gathered} 101.18 \\ (91.2-111.08) \end{gathered}$	102	$\begin{gathered} 112.5 \\ (100-125) \end{gathered}$
Tail (\% of H \& B)	90-100	105-120	107	85-90
Hindfoot (mm)	$\begin{gathered} 28.64 \\ (27.62-30.04) \end{gathered}$	$\begin{gathered} 24.76 \\ (23.49-25.92) \end{gathered}$	27	$\begin{gathered} 26 \\ (24-28) \end{gathered}$
Dorsal pelage with flat spines	\checkmark	\checkmark	\checkmark	\checkmark
Flanks with sharp delimitation Between dorsal and ventral colour	\checkmark	No	No	No
Ventral pelage	Creamy white	Dark orange with black tips	Ochraceous	Dark grey
Mammae	$2+2$	$2+2$	$2+2$	
Skull Traits				
Greatest Scale Length (mm)	$\begin{gathered} 36.38 \\ (34.19-39.71) \end{gathered}$	$\begin{gathered} 32.4 \\ (29.08-35.13) \end{gathered}$	33.6	29-38
Zygomatic Breadth (mm)	$\begin{gathered} 16.35 \\ (15.31-18.21) \end{gathered}$	$\begin{gathered} 14.75 \\ (13.31-15.92) \end{gathered}$	16	
Zygomatic Plate Length (mm)	$\begin{gathered} 3.22 \\ (2.79-3.72) \end{gathered}$	$\begin{gathered} 2.87 \\ (2.4-3.52) \end{gathered}$	3.2	
Upper Molar Row (mm)	$\begin{gathered} 5.89 \\ (5.23-6.44) \end{gathered}$	$\begin{gathered} 5.36 \\ (4.84-6.14) \end{gathered}$	5.1	5.1-6.2
Incisive Foramina Length (mm)	$\begin{gathered} 5.18 \\ (4.52-5.94) \end{gathered}$	$\begin{gathered} 4.58 \\ (3.95-5.30) \end{gathered}$	4.8	4.0-5.4
Diastema (mm)	$\begin{gathered} 9.36 \\ (8.17-10.93) \end{gathered}$	$\begin{gathered} 8.1 \\ (7.27-9.35) \end{gathered}$	8.9	
Nasal Length (mm)	$\begin{gathered} 12.29 \\ (11.20-13.83) \end{gathered}$	$\begin{gathered} 10.86 \\ (9.12-12.36) \\ \hline \end{gathered}$	11.4	

Table 3. Comparisons of skull measurements between M. tajuddinii sp. nov. and M. whiteheadi Thomas, 1894 (in mm)

	Maxomys tajuddinii sp. nov.							Maxomys whiteheadi	
	\mathbf{N}	Mean	Std. Deviation	\mathbf{N}	Mean	Std. Deviation			
Greater Scale Length	21	36.38	1.39	90	32.40	1.32			
Post Orbital Breadth	21	14.67	0.52	90	13.69	0.49			
Zygomatic Breadth	21	16.35	0.64	90	14.75	0.53			
Zygomatic Plate	21	3.22	0.29	90	2.87	0.22			
Inter Orbital Breadth	21	6.21	0.48	90	5.62	0.29			
Nasal Length	21	12.29	0.66	90	10.86	0.62			
Nasal Width	21	3.98	0.26	90	3.71	0.25			
Braincase Width	21	14.44	0.44	90	13.44	0.47			
Heigth of Braincase	21	9.93	0.46	90	9.26	0.36			
Diastema	21	9.36	0.65	90	8.10	0.46			
Palatal Length	21	14.34	0.72	90	12.38	0.52			
Upper Molar Row	21	5.89	0.31	90	5.36	0.26			
Incisive Foramina Length	21	5.18	0.42	90	4.58	0.30			
Incisive Foramina Breadth	21	2.80	0.27	90	2.40	0.18			
Molar 1 Width	21	1.64	0.10	90	1.55	0.09			
Molar 2 Width	21	1.56	0.09	90	1.46	0.09			
Molar 3 Width	21	1.18	0.09	90	1.14	0.09			
Molar 1 to Molar 1	21	3.53	0.32	90	2.95	0.22			
Molar 2 to Molar 2	21	3.85	0.23	90	3.35	0.26			
Molar 3 to Molar 3	21	4.30	0.23	90	3.81	0.27			
Bulla Tymphani Length	21	4.76	0.46	90	4.51	0.24			
Meso Pterygoid Width	21	2.78	0.30	90	2.49	0.17			
Ramus Angular Process	21	8.97	0.44	90	7.85	0.44			
Dental Length	21	17.41	0.91	90	15.66	1.19			

Table 4. Standardised and unstandardised canonical discriminant function coefficients of selected skull characters from M. tajuddinii sp. nov. and M. whiteheadi Thomas, 1894

	Function 1		
	Standardised	Unstandardised	
BB	0.32	0.66	
PL	0.67	1.19	
RAP	0.34	0.77	
(Constant)		-30.44	

APPENDIX 1. Samples used for morphometric analyses

NO	SPESIES	Museum No.	SEX	LOCALITY	Depository	Notes
1	M. whiteheadi	29090	Female	Melak, Kutai Barat, Kalimantan Timur	MZB	
2	M. whiteheadi	29092	Female	Melak, Kutai Barat, Kalimantan Timur	MZB	
3	M. whiteheadi	29073	Male	Melak, Maruwai, Kalimantan Timur	MZB	
4	M. whiteheadi	29093	Male	Melak, Kutai Barat, Kalimantan Timur	MZB	
5	M. whiteheadi	29094	Male	Melak, Kutai Barat, Kalimantan Timur	MZB	
6	M. whiteheadi	29098	Male	Melak, Kutai Barat, Kalimantan Timur	MZB	
7	M. whiteheadi	29099	Male	Melak, Kutai Barat, Kalimantan Timur	MZB	
8	M. whiteheadi	29100	Male	Melak, Kutai Barat, Kalimantan Timur	MZB	
9	M. whiteheadi	29102	Male	Melak, Kutai Barat, Kalimantan Timur	MZB	
10	M. whiteheadi	29103	Female	Melak, Kutai Barat, Kalimantan Timur	MZB	
11	M. whiteheadi	29104	Female	Melak, Kutai Barat, Kalimantan Timur	MZB	
12	M. whiteheadi	23645	Female	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	MZB	
13	M. whiteheadi	23642	Female	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	MZB	
14	M. whiteheadi	23641	Male	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	MZB	
15	M. whiteheadi	29059	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	
16	M. whiteheadi	29061	NR	Intulingau, Maruwai, Kalimantan Timur	MZB	
17	M. whiteheadi	29064	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	
18	M. whiteheadi	29071	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	
19	M. whiteheadi	29081	Female	Melak, Maruwai, Kalimantan Timur	MZB	
20	M. whiteheadi	23607	Female	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	MZB	
21	M. whiteheadi	23601	Male	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	MZB	
22	M. whiteheadi	23651	Male	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	MZB	
23	M. whiteheadi	23647	Male	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	MZB	
24	M. whiteheadi	23638	Male	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	MZB	
25	M. whiteheadi	15384	Male	Top of Gunung Bungkuk, Bengkulu	MZB	

NO	SPESIES	Museum No.	SEX	LOCALITY	Depository	Notes
26	M. whiteheadi	26247	Male	DAS Sebangau, Kalimantan Tengah	MZB	
27	M. whiteheadi	22220	Female	DAS Sebangau, Kalimantan Tengah	MZB	
28	M. whiteheadi	22212	NR	DAS Sebangau, Kalimantan Tengah	MZB	
29	M. whiteheadi	22215	Female	DAS Sebangau, Kalimantan Tengah	MZB	
30	M. whiteheadi	26251	Male	DAS Sebangau, Kalimantan Tengah	MZB	
31	M. whiteheadi	22217	Female	DAS Sebangau, Kalimantan Tengah	MZB	
32	M. whiteheadi	22222	Male	DAS Sebangau, Kalimantan Tengah	MZB	
33	M. whiteheadi	26253	Male	DAS Sebangau, Kalimantan Tengah	MZB	
34	M. whiteheadi	26234	Male	DAS Sebangau, Kalimantan Tengah	MZB	
35	M. whiteheadi	26246	Male	DAS Sebangau, Kalimantan Tengah	MZB	
36	M. whiteheadi	22210	Male	DAS Sebangau, Kalimantan Tengah	MZB	
37	M. whiteheadi	11647	Female	Labuhan Ratu, Kec.Jabung, Lampung Tengah	MZB	
38	M. whiteheadi	13338	Female	Mulyorejo, Way Abung III, Lampung, Sumatera	MZB	
39	M. whiteheadi	18347	Male	Pasir mayang, Jambi	MZB	
40	M. whiteheadi	18370	Male	Kebun Karet, Kec.Teboulu,Kab.Bungotebo, Jambi	MZB	
41	M. whiteheadi	18371	Male	Kebun Karet, Kec.Teboulu,Kab.Bungotebo, Jambi	MZB	
42	M. whiteheadi	24986	Female	Tapanuli Selatan, Sumatera Utara	MZB	
43	M. whiteheadi	5661	Male	Muara Dua, Palembang	MZB	
44	M. whiteheadi	15383	Male	Top of Gunung Bungkuk, Bengkulu	MZB	
45	M. whiteheadi	15569	Female	Camp S Santan, Dirgahayu, Ketaun, Bengkulu	MZB	
46	M. whiteheadi	15571	Female	Camp S Santan, Dirgahayu, Ketaun, Bengkulu	MZB	
47	M. whiteheadi	20560	Male	Gunung Palung, Ketapang, West Kalimantan	MZB	
48	M. whiteheadi	20569	Female	Gunung Palung, Ketapang, West Kalimantan	MZB	
49	M. whiteheadi	20580	Female	Bukit Baka, Bukit Raya, Sintang, West kalimantan	MZB	
50	M. whiteheadi	20567	Male	Gunung Palung, Ketapang, West Kalimantan	MZB	
51	M. whiteheadi	20582	Male	Bukit Baka, Bukit Raya, Sintang, West kalimantan	MZB	
52	M. whiteheadi	20559	Male	Gunung Palung, Ketapang, West Kalimantan	MZB	

NO	SPESIES	Museum No.	SEX	LOCALITY	Depository	Notes
53	M. whiteheadi	20574	Female	Gunung Palung, Ketapang, West Kalimantan	MZB	
54	M. whiteheadi	20571	Male	Gunung Palung, Ketapang, West Kalimantan	MZB	
55	M. whiteheadi	20562	Female	Gunung Palung, Ketapang, West Kalimantan	MZB	
56	M. whiteheadi	20568	Male	Gunung Palung, Ketapang, West Kalimantan	MZB	
57	M. whiteheadi	24944	Female	Tapanuli Selatan, Sumatera	MZB	
58	M. whiteheadi	24957	Female	Tapanuli Selatan, Sumatera	MZB	
59	M. whiteheadi	2071	Female	Deli, Sumatera Utara	MZB	
60	M. whiteheadi	24931	Female	Tapanuli Selatan, Sumatera	MZB	
61	M. whiteheadi	15385	Female	Top of Gunung Bungkuk, Bengkulu	MZB	
62	M. whiteheadi	TK152846	Female	Kubah National Park, Sarawak	UNIMAS	
63	M. whiteheadi	819	Male	Unimas Peatswamp	UNIMAS	
64	M. whiteheadi	TK156129	NR	Not recorded	UNIMAS	
65	M. whiteheadi	1844	Male	Kubah National Park, Sarawak	UNIMAS	
66	M. whiteheadi	TK152353	NR	Kubah National Park, Sarawak	UNIMAS	
67	M. whiteheadi	326	Male	Unimas Peatswamp	UNIMAS	
68	M. whiteheadi	1052	Female	Unimas Peatswamp	UNIMAS	
69	M. whiteheadi	TK152362	NR	Kubah National Park, Sarawak	UNIMAS	
70	M. whiteheadi	NA014	NR	Not recorded	MZB	
71	M. whiteheadi	5679	Male	Pendeng, 550 m , Lampung	MZB	
72	M. whiteheadi	5673	Male	Lesten, 700 m , Lampung	MZB	
73	M. whiteheadi	5663	Male	Kalianda, Lampung	MZB	
74	M. whiteheadi	24893	Male	Kawasan Tesso Nilo, Riau	MZB	
75	M. whiteheadi	24963	Male	Tapanuli Selatan, Sumatera Utara	MZB	
76	M. whiteheadi	24898	Male	Kawasan Tesso Nilo, Riau	MZB	
77	M. whiteheadi	13,031	Female	Bukit Bawang, Kec. Bohorak, Sumatera Utara	MZB	
78	M. whiteheadi	15,382	Male	Top of Gunung Bungkuk, Bengkulu	MZB	
79	M. whiteheadi	23,648	Male	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	MZB	

NO	SPESIES	Museum No.	SEX	LOCALITY	Depository	Notes
80	M. whiteheadi	29,065	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	
81	M. whiteheadi	29,067	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	
82	M. whiteheadi	29,069	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	
83	M. whiteheadi	22,233	Female	DAS Sebangau, Kalimantan Tengah	MZB	
84	M. whiteheadi	29,074	Male	Melak, Maruwai, Kalimantan Timur	MZB	
85	M. whiteheadi	29,078	Male	Melak, Maruwai, Kalimantan Timur	MZB	
86	M. whiteheadi	29,082	Female	Melak, Maruwai, Kalimantan Timur	MZB	
87	M. whiteheadi	29,083	Female	Melak, Maruwai, Kalimantan Timur	MZB	
88	M. whiteheadi	29,084	Male	Melak, Maruwai, Kalimantan Timur	MZB	
89	M. whiteheadi	TK152862	NR	Kubah National Park, Sarawak	UNIMAS	
90	M. whiteheadi	29,076	Female	Melak, Maruwai, Kalimantan Timur	MZB	
91	M. tajuddinii	29,058	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	Paratype
92	M. tajuddinii	29,062	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	Paratype
93	M. tajuddinii	29,066	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	Paratype
94	M. tajuddinii	29,068	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	Paratype
95	M. tajuddinii	29,070	Female	Intulingau, Maruwai, Kalimantan Timur	MZB	Paratype
96	M. tajuddinii	29,077	Male	Melak, Maruwai, Kalimantan Timur	MZB	Paratype
97	M. tajuddinii	29,080	Male	Melak, Maruwai, Kalimantan Timur	MZB	Holotype
98	M. tajuddinii	18,482	NR	Gn.Kerinci, Sungai Penuh, Jambi	MZB	
99	M. tajuddinii	29,086	Female	Melak, Maruwai, Kalimantan Timur	MZB	Paratype
100	M. tajuddinii	28,961	Male	Hutan gambut awang, Kec.Sungai Rawa, Inderapura, Riau	MZB	Paratype
101	M. tajuddinii	28,962	Female	Hutan gambut awang, Kec.Sungai Rawa, Inderapura, Riau	MZB	Paratype
102	M. tajuddinii	28,960	Female	Hutan gambut awang, Kec.Sungai Rawa, Inderapura, Riau	MZB	Paratype
103	M. tajuddinii	28,963	Male	Hutan gambut awang, Kec.Sungai Rawa, Inderapura, Riau	MZB	Paratype
104	M. tajuddinii	28,967	Male	BKM KM 70 Pangkalan Kerinci,Kab.Palalawan, Riau	MZB	Paratype
105	M. tajuddinii	28,968	Male	BKM KM 70 Pangkalan Kerinci,Kab.Palalawan, Riau	MZB	Paratype

NO	SPESIES	Museum No.	SEX		LOCALITY	Nepository
106	M. tajuddinii	TK153703	Male	Fraser's Hill, Malay Peninsula	UNIMAS	
107	M. tajuddinii	TK153717	Male	Fraser's Hill, Malay Peninsula	Paratype	
108	M. tajuddinii	TK152349	NR	Kubah National Park, Sarawak	UNIMAS	
109	M. tajuddinii	TK152861	NR	Kubah National Park, Sarawak	UNIMAS	Paratype
110	M. tajuddinii	471	Male	P. Balambangan, Sabah	UNIMAS	Paratype
111	M. tajuddinii	1618	Female	Jambusan Cave, Bau, Sarawak	UNIMAS	
112	M. ochraceiventer	23,606	Male	Desa Pa'Raye, Long Bawon, Nunukan, Kayan Mentarang	UNIMAS	
113	M. ochraceiventer	23,971	Male	Lampunut, Maruwai, Kalimantan Timur	MZB	
114	M. ochraceiventer	23,970	Female	Lampunut, Maruwai, Kalimantan Timur	MZB	
115	M. baeodon	TK152835	Male	Kubah National Park, Sarawak	MZB	
116	M. baeodon	3312	Male	Bettotan, Sandakan, Sabah	UNIMAS	
117	M. baeodon	3533	Male	Raeyoh, Sabah	Raffles Museum	
118	M. baeodon	3543	Female	Raeyoh, Sabah	Raffles Museum	
119	M. baeodon	3571	Female	Raeyoh, Sabah	Raffles Museum	Raffles Museum
120	M. baeodon	3224	Female	Bettotan, Sandakan, Sabah	Raffles Museum	

INSTRUCTIONS FOR AUTHORS

1. General. - Manuscripts to be published in TREUBIA must be written in English, typed in Times New Roman font 12 and submitted in triplicate to the editors of TREUBIA, Division of Zoology, Research Center for Biology, Widyasatwaloka, Jl. Raya JakartaBogor Km. 46, Bogor 16911, Indonesia. They should not be offered for prior or simultaneous publication elsewhere. Concise writing and omission of unessential material are recommended. After acceptance, a soft copy of the manuscript files should be sent to the editors of TREUBIA. Further correspondence can be conducted through email address: treubia@ gmail.com
2. Text. - The text must be typed, double spaced throughout. Captions of tables, figures, and plates should be inserted where you want them to be inserted, or listed at the end of the manuscript. All numbers under 10 and any number forming the first word of a sentence must be spelled out. Year should be completely written. Scientific names should all be italicized. It is recommended to use metric measurements in abbreviation (e.g. kg, cm, ml).
3. Citation. - References are to be cited in the text by the author's surname and year of publication, e.g. (Calder 1996, Carpenter 2005, Somadikarta 1986). For two authors, both names should be cited: e.g. (Ackery \& Vane-Wright 1984). For three or more authors, only the first author is given followed by et al., e.g. (Foster et al. 2002).
4. Abstract. - Except for short communications, articles should be accompanied by an abstract not to exceed 250 words which clearly states the essence of the paper. Key words should be mentioned following the abstract.
5. Acknowledgements, if any, should be placed preceding the list of references
6. References. - List of references should be in alphabetical order by the first or sole author's surname. Journal references should include author's surname and initials, year of publication, title of the paper, full title of the journal (typed in italic), volume number (typed in bold) and inclusive page numbers. Book references should include author's surname and initials, year of publication, title of the book (typed in italic) or/ and title of the chapter and editor (if part of a book), publisher, city of publication, and page numbers.

For example:
LaSalle, J. \& M.E. Schauff, 1994. Systematics of the tribe Euderomphalini (Hymenoptera: Eulophidae): parasitoids of whiteflies (Homoptera: Aleyrodidae). Systematic Entomology 19: 235-258.
MacKinnon, J. \& K. Phillips, 1993. Field Guide to the Birds of Borneo, Sumatra, Java and Bali. Oxford University Press, Oxford, 491 pp.
Stork, N.E., 1994. Inventories of biodiversity: more than a question of numbers. In: Forey,P.L., C.J. Humphries \& R.I. Vane-Wright (eds.), Systematics and Conservation Evaluation. Clarendon Press (for the Systematics Association), Oxford, pp. 81-100.
Maddison, D.R., 1995. Hemiptera. True bugs, cicadas, leafhoppers, aphids, etc.. Version 01 January 1995 (temporary). http://tolweb.org/ Hemiptera/8239/1995.01.01. In: The Tree of Life Web Project, http:// tolweb.org/ (accessed on 27 November 2007).
7. Proofs and reprints. - Final proofs are given to the first or sole author for correction and approval. Twenty five reprints are supplied free of charge. Joint authors will have to divide these copies among them at their discretion. Additional reprints can be furnished at cost, the order should be placed before the final printing.

CONTENT

VOL 39, DECEMBER 2012

CONTENT

PAGES

Anang Setiawan Achmadi, Ibnu Maryanto and Maharadatunkamsi. Systematic and descriptions of new species of Maxomys (Muridae) 1
Kazuma Matsumoto, Woro A. Noerdjito and Endang Cholik. Butterflies recently recorded from Lombok 27
Michael S. Engel. The honey bees of Indonesia (Hymenoptera: Apidae) 41
Maharadatunkamsi. Morphological variation in
Chironax melanocephalus (Chiroptera: Pteropodidae) from Indonesia and description of new subspecies 51
Djunijanti Peggie. A list of the butterflies of Ujung Kulon National Park, Java, Indonesia 67
Awit Suwito, Takahide A. Ishida, Kouhei Hattori and Masahito T. Kimura. Territorial and mating behaviours of two flower-breeding Drosophila species, D. elegans and D. gunungcola (Diptera: Drosophilidae) at Cibodas, West Java, Indonesia 77

