Arifin Fahmi, Bostang Radjagukguk
| Abstract views: 342 | PDF views: 896


Peatland has important role in wetland ecosystem stability. Depletion and disappearance of peat layer lead to loss of potential source of nutrient and disruption of wetland ecosystem stability. The research aimed to study the influence of peat thickness and land hydrological condition on the total nitrogen (N) content in soil, the influence of rapidly or naturally the depletion and disappear of peat layer on total N content in soil, and the influence of hydrological condition on total N content in soil. Total N was observed in June of 2009 and 2010 (transition from wet to dry season), September of 2009 and 2010 (peak of dry season), and January of 2010 and 2011 (peak of wet season). The research was carried out on potential acid sulphate soil (A), peaty acid sulphate soil (B),shallow peat which all of peat layers wereremoved (C), shallow peat which peat layer was partially removed (D), shallow peat (E), moderate peat (F) and deep peat (G). The results showed that total N content increased with increasing of peat thickness, the depletion and disappearance of peat layer reduced total N content in soil, and declining in the groundwater level increased total N content in soil.


Nitrogen, peat, wetland.

Full Text:



Adji FF, BD Kertonegoro and A Maas. 2005. Relationship between the depth of ground water table dynamics and peats degradation in Kalampangan Central Kalimantan. Proceeding of the Session on The Role of Tropical Peatlands In Global Change Processes. Yogyakarta, Indonesia. H Wosten and B Radjagukguk. (Eds.). 21–30. ALTERRA-EU INCO-STRAPEAT and RESTROPEAT.

Anda M, AB Siswanto and RE Subandiono. 2009. Properties of organic and acid sulfate soils and water of a ‘reclaimed’ tidal backswamp in Central Kalimantan, Indonesia. Geoderma 149, 54–65.

Banach AM, K Banach, EJW Visser, Z Stepniewska, AJM Smits, JGM Roelofs and LPM Lamers. 2009. Effects of summer flooding on floodplain biogeochemistry in Poland; implications for increased flooding frequency. Biogeochemistry 92, 247–262.

Breemen NV and P Buurman. 2002. Soil Formation, 2nd edition, 404. Kluwer Academic Publisher. Dordrecht, USA. Bremner JM. 1996. Total nitrogen. In : C.A. Black, D.D. Evans, J.L. White, L.E. Ensminger and F.E. Clark. (Eds.), Methods of Soil Analysis. Part 2. Chemical and microbiological properties. USA. Agronomy 9, 1149–1178. ASA.

Cabezas A, J Gelbrecht, E Zwirnmann, M Barth and D Zak. 2012. Effects of degree of peat decomposition, loading rate and temperature on dissolved nitrogen turnover in rewetted fens. Soil Biology and Biochemistry 48, 182–191.

Chimner RA and KC Ewel. 2005. A tropical freshwater wetland : II. Production, decomposition, and peat formation. Wetland Ecology and Management 13, 671–684.

Dohong S. 1999. Peningkatan Produktivitas Tanah Gambut yangDisawahkan dengan Pemberian Bahan Amelioran Tanah Mineral Berkadar Besi Tinggi. Disertasi. 171, Institut Pertanian Bogor, Bogor.

Harvey JW and PV McCormick. 2009. Groundwater’s significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, everglades, South Florida, USA. Hydrogeology Journal 17, 185–201.

Houle D, SB Gauthier, S Plaquet, D Planas and A Warren. 2006. Identification of two genera of N2–fixing cyanobacteria growing on the three feather moss species in boreal forests of Quebec, Canada. Canadian Journal of Botany 84, 1025–1029.

Kaiser, K. and K. Kalbitz. 2012. Cycling downwards – dissolved organic matter in soils. Soil Biology and Biochemistry 52, 29–32.

Kurnain A. 2005. Dampak Kegiatan Pertanian dan Kebakaran Atas Watak Gambut Ombrogen. Dissertasi, 315. Pascasarjana Fakultas Pertanian UGM. Yogyakarta.

Lambert K. 1995. Physico-Chemical Characterisation of Lowland Tropical Peat Soil, PhD Thesis, 161. RUG, Gent, Belgium.

Limin SH, E Yunsiska, K Kusin and S Alim. 2007. Restoration of hydrological status as the key to rehabilitation of damaged peatland in Central Kalimantan. Proceedings of the International Symposium and Workshop on Tropical Peatland, Carbon–Climate–Human Interactions on Tropical Peatland: Carbon pools, fire, mitigation, restoration and wise use. JO Rieley, C Banks and B Radjagukguk (Eds.), 217–223. Yogyakarta. CARBOPEAT-Liecester University, United Kingdom.

Maas A, R Sutanto, A Supriyo dan Hairunsyah. 1997. Perbaikan kualitas gambut tebal, dampaknya pada pertumbuhan dan produksi padi sawah. Laporan Hasil Penelitian. Lembaga Penelitian UGM Bekerjasama dengan Agricultural Research Management Project.

McCormick PV, JW Harvey and ES Crawford. 2011. Influence of changing water sources and mineral chemistry on the everglades ecosystem. Environmental Science and Technology 41(1), 28–63.

Page SE, CJ Banks, JO Rieley and R Wust. 2008. Extent, significance and vulnerability of the tropical peatlands carbon pools ; past, present and the future prospects. Proceedings of the 13th International Peat Congress. After Wise Use – The Future of Peatlands. Vol. 1. Tullamore, Ireland. C Farrel and J Feehan (Eds.). 233–236. International Peat Society.

Page SE, A Hosci?o, H Wosten, J Jauhiainen, M Silvius, JO Rieley, H Ritzema, K Tansey, L Graham, H Vasander and SH Limin. 2009. Restoration ecology of lowland tropical peatlands in Southeast Asia : Current knowledge and future research directions. Ecosystems 12, 888–905.

Reddy KR and RD DeLaune. 2008. The Biogeochemistry of Wetlands; Science and applications, 779. CRC Press. New York, USA.

Rieley JO, T Notohadiprawiro, B Setiadi and SH Limin. 2008. Restoration of tropical peatland in Indonesia ; why, where and how ? Proceedings of the 13th International Peat Congress, After Wise Use – The Future of Peatlands. Vol. 1. Tullamore, Ireland. C Farrel and J Feehan (Eds.).240–244. International Peat Society.

Rieley JO and SE Page. 2008. Carbon budgets under different land uses on tropical peatland. Proceedings of the 13th International Peat Congress, After Wise Use – The Future of Peatlands. Vol. 1. Tullamore, Ireland.Dalam : C Farrel and J Feehan (Eds.). 245–249. International Peat Society.

Sajarwan A. 1998. Pengaruh Pemberian Pupuk Kandang Terhadap Laju Dekomposisi dan Perubahan Sifat Kimia Tanah Gambut Fibrist. Tesis. 133. Universitas Brawijaya. Malang.

Sapek A. 2008. Phosphate and ammonium concentrations in groundwater from peat soils in relation to the water table. Polish Journal of Soil Science 41, 139–148.

Sapek A, B Sapek, S Chrzanowski and M Urbaniak. 2009. Nutrient mobilisation and losses related to the groundwater level in low peat soils. International Journal of Environment and Pollution 37(4),398–408.

Strakova P, RM Niemi, C Freeman, K Peltoniemi, H Toberman, I Heiskanen, H Fritze and R Laiho. 2011. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences 8, 2741–2755.

Suhardjo H and IPG Widjaja-Adhi. 1977. Chemical characteristics of the upper 30 cm of peat soils from Riau. Proceedings ATA 106 Midterm Seminar. Peat andPodzolics Soils and Their Potential for Agriculture in Indonesia. Bogor. 74–92. Soil Research Institute.

Vahdat E, F Nourbakhsh and M Basiri. 2012. Lignin content of range plant residues controls N mineralization in soil. Soil Biology and Biochemistry 47, 243–246.

Wahyunto, S Ritung, Suparto dan S Hardjo. 2005. Sebaran Gambut dan Kandungan Karbon di Sumatera dan Kalimantan. 254. Wetlands International – Indonesia Programme. Bogor, Indonesia.

Xing Y, J Bubier, T Moore, M Murphy, N Basiliko, S Wendel and C Blodau. 2011. The fate of 15N–nitrate in a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium fertilization. Biogeochemistry 103, 281–296.


  • There are currently no refbacks.