Beth Paul Naiola
| Abstract views: 970 | PDF views: 1011


The extent of salinity effect land due to bad agricultural practices and global climate change that could affect the productivity of cultivated plants in agricultural and coastal areas as a result of rising sea levels, encourage the study of cultivated plants resistance to salinity stress. This research is aimed to observe the mangrove Avicennia marina (Forsskål) Vierh., a halophyt, grew up on the beach as a plant model that is able to adapt to saline environment by pumping out the NaCl (sodium pump) and deposited on the leaf surface. On the application of sea water with a multilevel concentrations (0, 25, 50 and 75%) A. marina is able to adjust by changing the osmotic potential in line with the level of concentration of sea water, as an indication of the course of osmotic regulation. Meanwhile, soybean var. Anjasmoro only able to adapt to sea water at a concentration of 25%, equivalent to 150 mM NaCl. This result may be the starting point by breeders and biotecknolo gists in utilizing the potential genes drives the salinity resistance characters in Indonesian mangrove species (especially Avicennia marina) to contrive salinity resistance cultivars of cultivated food plants with better yield.


Salinity stress, adaptation mechanism, Avicennia marina (Forsskål) Vierh., mangrove, soybean.

Full Text:



Andersen FO and E Kristensen. 1988. Oxygen microgradients in the rhizosphere of the mangrove Avicennia marina. Marine Ecology 44, 201-204.

Aspinall D and LG Paleg. 1981. Proline accumulation: Physiological Aspects. In: D Aspinall and LG Paleg (Eds.). The Physiology and Biochemistry of Drought Resistance in Plants. Academic.

Aziz I and MA Khan. 2000. Physiological adaptations of Avicennia marina to seawater concentrations in the Indus delta, Pakistan. Pakistan Journal of Botany 32(1), 151-169.

Boyer JS. 1967. Water potential measured with a pressure chamber. Plant Physiology 42, 133-37.

Carvajal M, MC Martínez-Ballesta and V Martínez. 2004. Osmotic adjustment, water relations and gas exchange in pepper plants grown under NaCl or KCl. Environmental and Experimental Botany 52(2), 61-174.

Chen T, X Cai, X Wu, I Karahara, L Schreiber and J Lin. 2011. Casparian strip development and its potential function in salt tolerance. Plant Signal & Behavior 6 (10), 1499–1502.

Feitosa de Lacerda C, J Cambraia, MA Oliva and HA Ruiz. 2003. Osmotic adjustment in roots and leaves of two sorghum genotypes under NaCl stress. Brazilian Journal of Plant Physiology 15(2), 113-118.

Heelkvist J, GP Richards and PG Jarvis. 1974. Vertical gradient of water potential and tissue water relations in sitka spruce trees measured with the pressure chamber. Journal of Applied Ecology 11, 637-667.

Krauss KW, CE Lovelock, KL McKee, L López-Hoffman, SML Ewe and WP Sousa. 2008. Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany 89(2), 105–127.

Krishnamurthy P, K Ranathunge, S Nayak, L Schreiber and MK Mathew. 2011. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.). Journal of Experimental Botany 62(12), 4215–4228.

Naidoo G. 1987. Effects of salinity and nitrogen on growth and water relations in the mangrove, Avicennia marina (Forsskål) Vierh. New Phytologist 107, 317-325. Naiola BP, 1996. Regulasi osmosis pada tumbuhan tinggi. Hayati 3(1), 01-06.

Naiola BP dan T Muriningsih. 1996. Estimasi ‘osmotic adjustment’ dan akumulasi proline sebagai komponen osmotikum sitosolut dalam stres salinitas NaCl pada kedele. Prosiding Kongres Ilmu Pengetahuan Nasional (KIPNAS) VI Buku 3, 224-237.

Naiola BP. 2000. “Pressure Chamber”, alat untuk mengukur status dan tata air dalam tumbuhan. Berita Biologi 5(1), 125-130.

Naiola BP. 2006. fluktuasi potensial air harian gewang (Corypha Utan Lamk.), jenis tumbuhan hijau abadi di NTT. Berita Biologi 8 (1), 75-82.

Naiola BP dan D Siti Hazar Hoesen. 2003. Fluktuasi Air Dalam Tumbuhan (Plant Water Relations) dan Stabilitas Taman Nasional Gunung Halimun: Kianak {Castanopsis accuminatissima (Bl.) DC}. Berita Biologi 6(4), 601-607.

Paliyavuth C, B Clough and P Patanaponpaiboon. 2004. Salt uptake and shoot water relations in mangroves. Aquatic Botany 78(4), 349–360.

Rada F, G Goldstein, A Orozco, M Montilla, O Zabala and A Azocar. 1989. Osmotic and turgor relations of three mangrove ecosystem species. Australian Journal of Plant Physiology 16(6), 477–486.

Richter H, F Duhme, G Glatzel, TM Hincley and H Karlic. 1980. Dalam: Plants and Their Atmospheric Environment. J Grace, ED Ford and PG Jarvis (Editor). Blackwell. Oxford. Hlm. 263-272.

Scholander PF, HT Hammel, EA Hemmingsen and ED Bradstreet. 1964. Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Procedings of National Academy of Sciences, USA 52, 119-125.

Sinclair R and WN Venables. 1983. An Alternative Method for Analysing Pressure-Volume Curves Produced with the Pressure Chamber. Plant, Cell and Environment 6, 211-217.

Suárez N and MA Sobrado. 2000. Adjustments in leaf water relations of mangrove (Avicennia germinans) seedlings grown in a salinity gradient. Tree Physiology 20 (4), 277-282.

Sutcliffe JF. 1979. Plants and Water. Edward Arnold. London.

Tester M and R Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91, 503-527.

Tomlinson PB. 1995. The Botany of Mangroves. Cambridge Tropical Biology Series. Cambridge University Press. Cambridge.

Tyree MT and HT Hammel. 1972. The measurement of turgor pressure and water relations of plants by the pressure-bomb technique. Journal of Experimental Botany23, 267-282.

Tyree MT and PG Jarvis. 1982. Water In Tissue and Cells. In: Physiological Plant Ecology II, Encyclopedia of Plant Physiology 12. Springer-Verlag. Berlin.

Yan Z, W Wang and D Tang. 2007. Effect of different time salt stress on growth and some physiological processes of Avicennia marina seedlings. Marine Biology 152,581-587.

Yasseen BT and MA Abu-Al-Basal. 2008. Ecophysiology of Limnonium axillare and Avicennia marina from the coastline of Arabian Gulf-Qatar. Journal of Coast Conservation 12, 35-42.

a h t t p : / / s y d n e y . e d u . a u / s c i e n c e / b i o l o g y / l e a r n i n g /plant_form_function/mangroves/control.shtml


h t t p : / / w w w . g o o g l e . c o . i d / s e a r c h ? q=cable+roots+in+mangrove+plants d

e f adaptations.htm


  • There are currently no refbacks.