Debora Christin Purbani, Diah Radini Noerdjito, Ismu Purnaningsih, Yeni Yuliani, Danang Ambar Prabowo
| Abstract views: 478 | PDF views: 2101


A combined of morphological characters and molecular approach, is important for evaluating the current classification of microalgae. Phylogenetic trees based on 18S rDNA gene sequence analysis provide useful tools to distinguish between inter- and intra-specific morphologically similar species of coccoid green algae. The aim of the study was to compare the morphological characters and conduct molecular analysis of coccoid green algae isolated from Enggano Island, located southwest of Sumatera, Indonesia. Coccoid green algae samples were collected from different sites at Enggano Island by using a simple random sampling. The single algae were isolated and transferred to IMK medium in flasks by using microcapillaries method. The morphological characteristics of green algae were observed under culture conditions using light microscopy and the phylogenetic positions of the isolated strains were defined according to the 18S rDNA gene sequences. According to homology search (BLAST) and phylogenetic tree analysis, four of the isolated coccoid green algae possessed high sequence similarity, ranging between 90-100%, to Chlorellavulgaris, Auxenochlorella protothecoides, Miractinium reisseri, and Micractinium balenophorum.


coccoid green algae, similar phenotypes, 18S rDNA, phylogeny, InaCC

Full Text:



Alemzadeh, E., Haddad, R., Ahmadi, A. R., Hosseini, R., and Moezzi, M. 2014. Identification of Chlorophyceae based on 18S rDNA sequences from Persian Gulf. Iranian Journal of Microbiology, 6(6), pp. 437–442.

Anderson, R. A. 2005. Algal Culturing Techniques, 1st Edition. Elsevier Academic Press Phycological Society of America. San Diego, CA. pp. 596

Barsanti, L., and Gualtieri, P. 2014. Algal Culturing. In Algae. CRC Press. Italy. pp. 221–266.

Bellinger, E. G., and Sigee, D. C. 2015. Freshwater Algae: Identification, Enumeration and Use as Bioindicators. 2nd ed. John Wiley & Sons, Ltd. London. pp. 275.

Bhuvaneshwari, T., Deviram, G. V. N. S., Uma, L., and Prabaharan, D. 2016. Validation of Selected Oscillatoriales from Various Indian Coasts through Phenetic and 16S rDNA Gene. International Journal of Current Microbiology and Applied Sciences, 5(7), pp. 944-952.

Chae, H., Lim, S., Kim, H. S., Choi, H. G., and Kim, J. H. 2019. Morphology and phylogenetic relationships of micractinium (Chlorellaceae, trebouxiophyceae) taxa, including three new species from antarctica. Algae, 34(4), pp. 267–275.

Champenois, J., Marfaing, H., and Pierre, R. 2015. Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. Journal of Applied Phycology, 27(5), pp. 1845–1851.

Coesel, P. F. M., and Krienitz, L. 2008. Diversity and geographic distribution of desmids and other coccoid green algae. Biodiversity and Conservation, 17(2), pp. 381–392.

Darienko, T., Rad-Menéndez, C., Campbell, C., & Pröschold, T. (2019). Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov. Systematics and biodiversity, 17(8), 811-829.

Dharmayanti I. 2011. Filogenetika molekular: Metode taksonomi organisme berdasarkan sejarah evolusi. Wartazoa, 21(1), pp. 1-10.

Dunker, S., and Wilhelm, C. 2018. Cell wall structure of coccoid green algae as an important trade-offbetween biotic interference mechanisms and multidimensional cell growth. Frontiers in Microbiology, 9(719), pp. 1-11.

Duong, V. T. 2016. Isolation and evaluation of microalgae strains from The Northern Territory and Queensland - Australia that have adapted to accumulate triacylglycerides and protein as storage. The University of Queensland. Queensland, Australia. pp. 168.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), 1792-1797.

Fučíková, K., Leliaert, F., Cooper, E. D., Škaloud, P., D’Hondt, S., De Clerck, O., Gurgel, C. F. D., Lewis, L. A., Lewis, P. O., Lopez-Bautista, J. M., Delwiche, C. F., and Verbruggen, H. 2014. New phylogenetic hypotheses for the core Chlorophyta based on chloroplast sequence data. Frontiers in Ecology and Evolution, 2(63), pp. 1-12.

Jang, H. S., Kang, N. S., Kim, K. M., Jeon, B. H., Park, J. S., and Hong, J. W. 2017. Description and application of a marine microalga Auxenochlorella protothecoides isolated from Ulleung-do. 생명과학회지, 27(10), 1152–1160.

Kaštovský, J., Fucíková, K., Veselá, J., Carías, C. B., and Vegas-Vilarrúbia, T. 2019. Algae. In Biodiversity of Pantepui: The Pristine “Lost World” of the Neotropical Guiana Highlands. Academic Press Elsevier. San Diego, CA. pp. 470.

Krienitz, L., and Bock, C. 2012. Present state of the systematics of planktonic coccoid green algae of inland waters. Hydrobiologia, 698, pp. 295-326.

Krienitz, L., Hegewald, E. H., Hepperle, D., Huss, V. A. R., Rohr, T., and Wolf, M. 2004. Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia, 43(5), pp. 529–542.

Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), pp. 1547–1549.

Leliaert, F., Tronholm, A., Lemieux, C., Turmel, M., Depriest, M. S., Bhattacharya, D., Karol, K. G., Fredericq, S., Zechman, F. W., and Lopez-Bautista, J. M. 2016. Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov. Scientific Reports, 6 (25367), pp. 1-13.

Lewis, L. A., and McCourt, R. M. 2004. Green algae and the origin of land plants. American Journal of Botany, 91(10) pp. 1535–1556.

Luo, W., Pröschold, T., Bock, C., and Krienitz, L. 2010. Generic concept in Chlorella-related coccoid green algae (Chlorophyta, Trebouxiophyceae). Plant Biology, 12(3), pp. 545–553.

Luo, Wei, Pflugmacher, S., Pröschold, T., Walz, N., and Krienitz, L. 2006. Genotype versus Phenotype Variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist, 157(3), pp. 315–333.

Naselli-Flores, L., and Barone, R. 2009. Green Algae. Encyclopedia of Inland Waters. Academic Press. New York, USA. pp. 166–173.

Nishimaki, T., and Sato, K. 2019. An Extension of the Kimura Two-Parameter Model to the Natural Evolutionary Process. Journal of Molecular Evolution, 87(1), pp. 60-67.

Shubert, E., and Gärtner, G. 2015. Nonmotile Coccoid and Colonial Green Algae. In Freshwater Algae of North America: Ecology and Classification. 2nd Ed. Academic Press. New York, US. pp. 315-373.

Song, H., Hu, Y., Zhu, H., Wang, Q., Liu, G., and Hu, Z. 2016. Three novel species of coccoid green algae within the Watanabea clade (Trebouxiophyceae, Chlorophyta). International Journal of Systematic and Evolutionary Microbiology, 66(12), pp. 5465-5477.

Soylu, E. N., and Gönülol, A. 2012. Morphological and 18S rDNA analysis of coccoid green algae isolated from lakes of Kızılırmak Delta. Turkish Journal of Biology, 36, pp. 247-254.

Tale, M., Ghosh, S., Kapadnis, B., and Kale, S. 2014. Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresource Technology, 169, pp. 328–335.

Wang, Y., Tian, R. M., Gao, Z. M., Bougouffa, S., and Qian, P. Y. 2014. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PLoS ONE, 9(3), pp. 1-11.


  • There are currently no refbacks.