Bioprospection of Enggano Macroscopic Fungi as Antibacterial and Antioxidant Agents

Evana Evana, Kartika Dyah Palupi, Listiana Oktavia, Ahmad Fathoni
| Abstract views: 204 | PDF views: 165


Macrofungi in Indonesia have not been widely studied for their pharmacological activity, especially as a source of antibacterial and antioxidant properties, even though Indonesia as a tropical country has quite a high diversity of macrofungi. This study aims to reveal the potential of macrofungi from the Enggano forest as a source of antibacterial and antioxidant compounds. Four types of macrofungi were collected and their metabolites were extracted using four types of organic solvents. Antibacterial and antioxidant activity assay of the extract was carried out using the TLC Bioautography method. From the sixteen macrofungal extracts, there is one extract that has the strongest antibacterial activity compared to the others, namely n-hexane Coriolopsis polyzona. It showed moderate antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 256–128 μg/mL, respectively. Meanwhile, the antioxidant activity of the macrofungal extracts showed weak activity with IC50 values of 3080–7370 μg/mL (AAI values of 0.033–0.079).


Macrofungi; Enggano; antibacterial; antioxidant; Coriolopsis polyzona

Full Text:



Achenbach, H., and Blümm, E. 1991. Investigation of the Pigments of Pycnoporus sanguineus-Pycnosanguin and New Phenoxazin-3-ones. Archiv der Pharmazie 324, pp. 3-6.

Blackwell, M., 2011. The Fungi: 1, 2, 3 ... 5.1 Million Species?. American Journal of Botany, 98(3), pp. 426–438.

Dandawate, P., Padhye, S., Schobert, R., and Biersack, B., 2019. Discovery of natural products with metal-binding properties as promising antibacterial agents. Expert Opinion on Drug Discovery, 14(6), pp. 563–576.

Das, K., Tiwari, R. K. S., and Shrivastava, D. K., 2010. Techniques for evaluation of medicinal plant products as antimicrobial agent : Current methods and future trends. Journal of Medicinal Plants Research, 4(2), pp. 104–111.

De Silva, D. D., Rapior, S., Sudarman, E., Stadler, M., Xu, J., Aisyah Alias, S., and Hyde, K. D., 2013. Bioactive metabolites from macrofungi: Ethnopharmacology, biological activities, and chemistry. Fungal Diversity, 62(1), pp. 1–40.

Dewanjee, S., Gangopadhyay, M., Bhattacharya, N., Khanra, R., and Dua, T. K., 2015. Bioautography and its scope in the field of natural product chemistry. Journal of Pharmaceutical Analysis, 5(2), pp. 75–84.

Dewi, M., Aryantha, I. N. P., and Kandar, M., 2019. The Diversity of Basidiomycota Fungi that Have the Potential as a Source of Nutraceutical to be Developed in the Concept of Integrated Forest Management. International Journal of Recent Technology and Engineering, 8(2S), pp. 81–85.

Elfirta, R. R., and Saskiawan, I., 2020. The Functional Character Of Auricularia auricula Crude Polysaccharides: Antioxidant And antibacterial Activity. Berita Biologi, 19(3), pp. 433–440.

Hibbett, D. S., Binder, M., Bischoff, J. F., Blackwell, M., Cannon, P. F., Eriksson, O. E., … Zhang, N., 2007. A higher-level phylogenetic classification of the Fungi. Mycological Research, 111(5), pp. 509–547.

Hwang, H. J., Kim, S. W., Xu, C. P., Choi, J. W., and Yun, J. W., 2004. Morphological and rheological properties of the three different species of basidiomycetes Phellinus in submerged cultures. Journal of Applied Microbiology, 96, pp. 1296–1305.

Jaouani, A., Tabka, M.G., Penninckx, M.J. 2006. Lignin modifying enzymes of Coriolopsis polyzona and their role in olive oil mill wastewaters decolourisation. Chemosphere, 62(9), pp. 1421-1430.

Khatun, S., Islam, A., Cakilcioglu, U., and Chatterjee, N. C., 2012. Research on Mushroom as a Potential Source of Nutraceuticals: A Review on Indian Perspective. American Journal of Experimental Agriculture, 2(1), pp. 47–73.

Kuete, V., and Efferth, T., 2010. Cameroonian medicinal plants : pharmacology and derived natural products. Frontiers in PHARMACOLOGY, 1, pp. 1–19.

Kumar, S. S., Shankar, S., and Mohan, S. C., 2017. In vitro Antioxidant and Antimicrobial Activity of Polysaccharides Extracted from Edible Mushrooms Pleurotus florida and Agrocybe cylindracea. Singapore Journal of Chemical Biology, 6(1), pp. 17–22.

Lindequist, U., Niedermeyer, T. H. J., and Jülich, W. D., 2005. The Pharmacological Potential of Mushrooms. Evidence-Based Complementary and Alternative Medicine, 2(3), pp. 285–299.

Lomascolo, A., Uzan-Boukhris, E., Herpoël-Gimbert, I., Sigoillot, J. C., and Lesage-Meessen, L., 2011. Peculiarities of Pycnoporus species for applications in biotechnology. Applied Microbiology and Biotechnology, 92, pp. 1129–1149.

Molyneux, P., 2004. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol., 26(2), pp. 211–219.

Ogidi, C. O., and Oyetayo, V. O., 2015. Antifungal effect of Coriolopsis polyzona (Pers ) on fungi isolated from remnant foods and wastewater from restaurants in Akure metropolis, Nigeria. African Journal of Microbiology Research, 9(8), pp. 527–533.

Oyetayo, O. V., Nieto-Camacho, A., Ramırez-Apana, T. M., Baldomero, R. E., and Jimenez, M., 2013. Total Phenol, Antioxidant and Cytotoxic Properties of Wild Macrofungi Collected from Akure Southwest Nigeria. Jordan Journal of Biological Sciences, 6(2), pp. 105–110.

Peng, T. Y., and Don, M. M., 2013. Antifungal Activity of In-vitro Grown Earliella scabrosa, a Malaysian Fungus on Selected Wood-degrading Fungi of Rubberwood. Journal of Physical Science, 24(2), pp. 21–33.

Pessini, G. L., Filho, B. P. D., Nakamura, C. V., and Cortez, D. A. G., 2003. Antibacterial Activity of Extracts and Neolignans from Piper regnellii (Miq.) C. DC. var. pallescens (C.DC.) Yunck. Mem Inst Oswaldo Cruz, 98(8), pp. 1115–1120.

Praptiwi, Raunsai, M., Wulansari, D., Fathoni, A., and Agusta, A., 2018. Antibacterial and Antioxidant Activities of endophytic Fungi Extracts of medicinal plants from Central Sulawesi. Journal of Applied Pharmaceutical Science, 8(08), pp. 69–74.

Reis, F. S., Pereira, E., Barros, L., Sousa, M. J., Martins, A., and Ferreira, I. C. F. R., 2011. Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules, 16, pp. 4328–4338.

Ren, L., Perera, C., and Hemar, Y., 2012. Antitumor activity of mushroom polysaccharides: A review. Food and Function, 3, pp. 1118–1130.

Rohr, C.O., Levin, L.N., Mentaberry, A.N., Wirth, S.A. 2013. A First Insight into Pycnoporus sanguineus BAFC 2126 Transcriptome. PLoS ONE, 8(12): pp. 1-14.

Scherer, R., and Godoy, H. T., 2009. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112, pp. 654–658.

Silva, M. T. G., Simas, S. M., Batista, T. G. F. M., Cardarelli, P., and Tomassini, T. C. B., 2005. Studies on antimicrobial activity, in vitro, of Physalis angulata L . (Solanaceae) fraction and physalin B bringing out the importance of assay determination. Mem Inst Oswaldo Cruz, 100(7), pp. 779–782.

Singdevsachan, S. K., Patra, J. K., and Thatoi, H., 2013. Nutritional and Bioactive Potential of Two Wild Edible Mushrooms (Lentinus sajor-caju and Lentinus torulosus) from Similipal Biosphere Reserve, India. Food Science and Biotechnology, 22(1), pp. 137–145.

Smânia, A., Marques, C. J. S., Smânia, E. F. A., Zanetti, C. R., Carobrez, S. G., Tramonte, R., and Loguercio-Leite, C., 2003. Toxicity and Antiviral Activity of Cinnabarin Obtained from Pycnoporus sanguineus (Fr.) Murr. Phytotherapy Research, 17, pp. 1069–1072.

Suay, I., Arenal, F., Asensio, F. J., Basilio, A., Cabello, M. A., Díez, M. T., … Vicente, M. F., 2000. Screening of basidiomycetes for antimicrobial activities. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 78, pp. 129–139.

Susan, D., and Retnowati, A., 2017. Catatan Beberapa Jamur Makro Dari Pulau Enggano: Diversitas Dan Potensinya. Berita Biologi, 16(3), pp. 243–256.

Takao, L. K., Imatomi, M., and Gualtieri, S. C. J., 2015. Antioxidant activity and phenolic content of leaf infusions of Myrtaceae species from Cerrado (Brazilian Savanna). Braz. J. Biol., 75(4), pp. 948–952.

Wang, J., Yue, Y.-D., Tang, F., and Sun, J., 2012. TLC Screening for Antioxidant Activity of Extracts from Fifteen Bamboo Species and Identification of Antioxidant Flavone Glycosides from Leaves of Bambusa. textilis McClure. Molecules, 17, pp. 12297–12311.

Wasser, S. P., 2002. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60, pp. 258–274.

Zmitrovich, I.V., Ezhov, O.N,, Ranadive, K.R., Wasser, S.P. 2017. Profiles of Little-Known Medicinal Polypores: Earliella scabrosa (Agaricomycetes). International Journal of Medicinal Mushrooms, 19(11), pp. 1023-1027.


  • There are currently no refbacks.