COMPOSITION AND QUANTIFICATION OF FATTY ACIDS PRODUCED BY Xylaria sp. DAP KRI-5

Ahmad Fathoni, Muhammad Ilyas, Praptiwi Praptiwi, Andi Saptaji Kamal, Lukman Hafid, Lina Marlina, Andria Agusta
| Abstract views: 569 | PDF views: 550

Abstract

Asam lemak mempunyai nilai guna komersial sebagai suplemen makanan, produk farmasi dan sumber energi terbarukan. Sumber asam lemak sebagian berasal dari hewan, tumbuhan, dan jamur endofit. Penelitian ini bertujuan untuk menganalisis kandungan dan komposisi asam lemak dari jamur endofit  Xylaria sp. DAP KRI-5. Asam lemak didapatkan dari fraksi n-heksana yang dihasilkan dari partisi ekstrak etil asetat Xylaria sp. DAP KRI-5 dengan n-heksana: metanol (1:1). Turunan FAME (Fatty acid methyl ester) dari asam lemak didentifikasi dengan menggunakan GC-MS. Kandungan asam lemak dari fraksi n-heksana Xylaria sp. DAP KRI-5 adalah 26,39% (b/b) ekstrak kering. Analisis kuantitatif dilakukan menggunakan GC-MS. Komposisi dan kuantifikasi asam lemak Xylaria sp. DAP KRI-5 adalah asam linoleat (41,177%; 112,24 mg/L); asam palmitat (25,114%; 68,45 mg/L); asam oleat (14.198%; 38,70 mg/L);  asam stearat (6,575%; 17,2 mg/mL); dan asam palmitoleat 2,165%; 5,90 mg/mL). Persentase asam lemak jenuh dan tidak jenuh berturut-turut adalah 31,69 and 57,54%. Kesimpulan dari penelitian ini menunjukkan jamur endofit Xylaria sp. DAP KRI-5 berpotensi sebagai sumber asam lemak tidak jenuh. Penelitian ini merupakan laporan pertama dari asam lemak yang diproduksi oleh Xylaria sp. DAP KRI-5.

 

Keywords

Asam lemak, Jamur endofit, Xylaria sp. DAP KRI-5, GC-MS

Full Text:

PDF

References

Akpinar-Bayizit, A., 2014. Fungal Lipids: The Biochemistry of Lipid Accumulation. International Journal of Chemical Engineering and Applications, 5(5), pp. 409–414.

Artanti, A., Tachibana, S. and Kardono, L.B.S. 2014., Effect of Media Compositions on α-glucosidase Inhibitory Activity, Growth and Fatty Acid Content in Mycelium Extracts of Colletotrichum sp. TSC13 from Taxus Sumatrana (Miq.) de Laub. Pakistan Journal of Biological Sciences, 17, pp. 884-890.

Aussant, J., Guihéneuf, F. and Stengel, D.B., 2018. Impact of temperature on fatty acid composition and nutritional value in eight species of microalgae. Appl Microbiol Biotechnol, 102 (12), pp. 5279-5297.

Calvo, A.M., Gardner, H.W., and Keller, N.P. 2001. Genetic Connection between Fatty Acid Metabolism and Sporulation in Aspergillus nidulans. Lipids and Lipoproteins, 276(28), pp. 25766-25774.

Chang, G., Luo, Z., Gu, S., Wu, Q., Chang, M. and Wang, X,. 2013. Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresource technology, 142, pp. 255–260.

Dayley, Jr., Oliver, D., Wang, X., Chen, F. and Huang, G., 2011. Anticancer Activity of Branched-Chain Derivatives of Oleic Acid. Anticancer Research, 31, pp. 3165–3169.

Fathoni, A., Ilyas, M., Cahyana AH, Praptiwi, dan Agusta A. 2013. Skrining Dan Isolasi Metabolit Aktif Antibakteri Kultur Jamur Endofit Dari Tumbuhan Albertisia Papuana Becc . Berita Biologi, 12(3), pp. 307–314.

Fathoni, A. and Agusta, A., 2019. Bioproduction of Cytochalasin D by Endophytic Fungus Xylaria sp. DAP KRI-5. Journal of Applied and Pharmaceutical Science, 9(3), pp. 105-110.

Feofilova, E. P., Sergeeva,Y.E., Mysyakina, I.S., and Bokareva, D.A. 2015. Lipid Composition in Cell Walls and in Mycelial and Spore Cells of Mycelial Fungi. Microbiology, 84(2), pp. 170–176.

Gao, R., Li, Z., Zhou, X., Cheng, S. and Zheng, L., 2017.

Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production. Biotechnol Biofuels, 10: pp. 247.

Hadley, K.B.,, Ryan, A.S., Forsyth, S., Gautier, S. and Salem Jr, N., 2016. The Essentiality of Arachidonic Acid in Infant Development. Nutrient, 8(216), pp. 1–47. https://www.gbif.org/species/5255147, accessed on March 2, 2021.

Kenar, J.A., Moser, B. and List, G.R., 2017. Naturally occurring fatty acids: Source, chemistry, and uses. In: Ahmad, M.U., editor. Fatty Acids: Chemistry, Synthesis, and Applications. Amsterdam, The Netherlands: Elsevier. pp. 23-82.

Longo, L.V.G., Nakayasu, E.S., Gazos-Lopes, F., Vallejo, M.C., Matsuo, A.L., et al. 2013. Characterization of Cell Wall Lipids from the Pathogenic Phase of Paracoccidioides brasiliensis Cultivated in the Presence or Absence of Human Plasma. Plos One, 8(5): pp. e63372.

Matsakas, L., Giannakou M. and Vörös, D., 2017. Effect of Synthetic and Natural Media on Lipid Production from Fusarium Oxysporum. Electronic Journal of Biotechnology, 30, pp. 95–102.

Murphy, D.J., 2001. The Biogenesis and Functions of Lipid Bodies in Animals , Plants and Microorganisms. Progress Lipid Research, 40(5), pp. 325–438.

Mysyakina, I.S., Sergeeva, Y.E. and D.A. Bokareva D.A., 2018. Lipid Composition of the Spores of Zygomycetous and Ascomycetous Fungi during Cessation of the Exogenous Dormancy State. Microbiology (Russian Federation), 87(1), pp. 51–59.

Peng, X.W. and Chen H.Z., 2007. Microbial Oil Accumulation and Cellulase Secretion of the Endophytic Fungi from Oleaginous Plants. Annals of Microbiology, 57(2), pp. 239–242.

Pinto, M.E. A., Araújo, S.G., Morais, M.I., Sá, N.P., Lima, C.M, Rosa, C.A., Siquera, E.P., Johann, S. and Lima, L.A.R.S., 2017.

Antifungal and Antioxidant Activity of Fatty Acid Methyl Esters from Vegetable Oils. Anais Da Academia Brasileira de Ciências, 89(3), pp. 1671–1681.

Rustan, A.C. and Drevon, C.A., 2005. Fatty Acids : Structures and Properties. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd : USA. pp.1-7.

Sinanoglou, V.J., Zoumpoulakis, P., Heropoulos, G., Proestos, C., Ćirić, A., Petrovic, J., Glamoclija, J. and Sokovic, M.,. 2015. Lipid and Fatty Acid Profile of the Edible Fungus Laetiporus Sulphurous. Antifungal and Antibacterial Properties. Journal of Food Science and Technology, 52(6), pp. 3264–3272.

Suleiman, W.B., El-sheikh, H.H., Abu-Elreesh, G. and Hashem, A.H., 2018. Recruitment of Cunninghamella Echinulata as an Egyptian Isolate to Produce Unsaturated Fatty Acids. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9(1), pp.764–774.

Van Etten J.L, and Gottlieb D. 1965. Biochemical Changes During the Growth of Fungi: II. Ergosterol and Fatty Acids in Penicillium atrovenetum. J Bacteriol. 89, pp.409-414.https://jb.asm.org/content/jb/89/2/409.full.pdf accessed on Maret 2, 2021

Weyda, I., Sinha, M., Sørensen, A., Lubeck, P.S. and Ahring, B.K., 2018. Increased Production of Free Fatty Acids and Triglycerides in Aspergillus Carbonarius by Metabolic Engineering of Fatty Acid Biosynthesis and Degradation Pathways. JSM Microbiology, 6(1), pp. 1049.

Wheni, A. and Tachibana, S., 2017. Alfa-Glucosidase Inhibitor Produced by an Endophytic Fungus, Xylariaceae Sp . QGS 01 from Quercus Gilva Blume. Food Science and Human Wellness, 6(2), pp.88–95.

Yang, Y., Jin, Z., Jin, Q. and Dong, M., 2015. Isolation and Fatty Acid Analysis of Lipid-Producing Endophytic Fungi from Wild Chinese Torreya Grandis. Microbiology, 84(5), pp. 710–716.

Yun, E.J., Lee, J., Kim, D.H., Kim, J., Kim, S,, Jin, Y.S., Kim, K.H., 2018. Metabolomic elucidation of the effects of media and carbon sources on fatty acid production by Yarrowia lipolytica. Journal of Biotechnology, 272–273, pp.7-13.


Refbacks

  • There are currently no refbacks.