APLIKASI INDUKSI MUTASI UNTUK PEMULIAAN TANAMAN HIAS

Endang Gati Lestari
| Abstract views: 4720 | PDF views: 3135

Abstract

ABSTRACT

The breeding of ornamental plants through mutation induction has been applied to obtain the desired new characters. High diversity, such as brighter colors, more attractive shapes, and aromas, are needed for the assembly of new high-yielding varieties to increase sales value. Mutagens that can be used as agents for mutation induction are physical mutagens (gamma rays, x rays, beta rays, UV rays) and chemical mutagens (EMS, DES, colchicine, oryzalin). The mutagens have been implemented to obtain a superior character compared to its parents. Breeding of ornamental plants through mutation has been applied in various countries such as Japan, Thailand, Korea, the Netherlands, and Indonesia to produce many new varieties, comprising of chrysanthemums, roses, gladiolus, tulips, carnations, etc. The resulting new characteristics include a change in color to become more attractive according to market tastes, the shape and petals of a single flower that was originally single, becoming stacked, and not easily wither. The purpose of writing this review is to provide information about the role of mutations in the formation of new varieties in ornamental plants as well as mutagens that able to be utilized both physically and chemically.

 

 

ion has been applied to obtain the desired new characters. High diversity, such as brighter colors, more attractive shapes, and aromas, are needed for the assembly of new high yielding varieties to increase sales value. Mutagens that can be used as agents for mutation induction are physical mutagens (gamma rays, x rays, beta rays, UV rays) and chemical mutagens (EMS, DES, colchicine, oryzalin). The mutagens have been implemented to obtain a superior character compared to its parents. Breeding of ornamental plants through mutation has been applied in various countries such as Japan, Thailand, Korea, the Netherlands, and Indonesia to produce many new varieties, comprising of chrysanthemums, roses, gladiolus, tulips, carnations etc. The resulting new characteristics include a change in color to become more attractive according to market tastes, the shape and petals of a single flower that were originally single, become stacked, and not easily wither. The purpose of writing this review is to provide information about the role of mutations for the formation of new varieties in ornamental plants as well as mutagens that able to be utilized both physically and chemically. Key words: in vitro culture, somaclonal variation, mutase ABSTRAK Pemuliaan pada tanaman hias melalui induksi mutasi telah diaplikasikan untuk mendapatkan karakter baru yang diinginkan. Keragaman yang tinggi seperti warna menjadi lebih cemerlang, bentuk dan aroma lebih menarik sangat diperlukan untuk perakitan varietas unggul baru sehingga meningkatkan nilai jual. Mutagen yang dapat digunakan sebagai agen untuk induksi mutasi adalah mutagen fisik (sinar gamma, sinar x, sinar beta, UV) dan mutagen kimia (EMS, DES, kolkisin, oryzalin), mutagen tersebut telah diaplikasikan untuk mendapatkan karakter yang lebih unggul dibanding tetuanya. Pemuliaan pada tanaman hias melalui mutasi telah dilakukan diberbagai negara seperti Jepang, Tailand, Korea, Belanda termasuk di Indonesia untuk menghasilkan banyak varietas baru antara lain pada krisan, mawar, gladiol, tulip, anyelir dll. Sifat baru yang dihasilkan antara lain perubahan pada warna menjadi lebih menarik sesuai selera pasar, bentuk dan kelopak bunga yang semula tunggal, menjadi bertumpuk, serta menjadi tidak mudah layu. Tujuan penulisan review ini adalah untuk memberikan informasi peran mutasi untuk pembentukan varietas baru pada tanaman hias serta mutagen baik fisik maupun kimia yang dapat digunakan. 

Keywords

kultur in vitro, variasi somaklonal, mutasi

Full Text:

PDF

References

Ade, R. and Rai, M. K. (2010) ‘Review : Colchicine , current advances and future prospects’, Bioscience, 2(2), pp. 90–96.

Ahloowalia, B. S., Maluszynski, M. and Nichterlein, K. (2004) ‘Global impact of mutation-derived varieties’, Eupytica 135. pp. 187–188.

Aida, R. et al. (2000) ‘Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation’, Plant Science, 153(1), pp. 33–42. doi: 10.1016/S0168-9452(99)00239-3.

Aida, R. et al. (2005) ‘Efficient transgene expression in chrysanthemum, Chrysanthemum morifolium Ramat., with the promoter of a gene for tobacco elongation factor 1 α protein’, Japan Agricultural Research Quarterly, 39(4), pp. 269–274. doi: 10.6090/jarq.39.269.

Al-Safadi, B., MirAli, N. and Arabi, M. I. E. (2000) ‘Improvement of garlic (Allium sativum L.) resistance to white rot and storability using gamma irradiation induced mutations’, Journal of Genetics and Breeding, 54(3), pp. 175–181.

Andriyani and Muslihatin W (2017) ‘Pengaruh Mutagen Kimia EMS terhadap Perkembangan Bunga Tanaman Cabai’, Jurnal Sains dan Seni ITS, 6(2), pp. 22–24.

Anne, S. and Lim, J. H. (2020) ‘Mutation Breeding Using Gamma Irradiation in the Development of Ornamental Plants : A Review Mutation Breeding Using Gamma Irradiation in the Development of Ornamental Plants : A Review’, Flower Res J, 3(November), pp. 102–115. doi: 10.11623/frj.2020.28.3.01.

Azadi, P. et al. (2016) ‘Current status and biotechnological advances in genetic engineering of ornamental plants’, Biotechnology Advances. doi: 10.1016/j.biotechadv.2016.06.006.

Chandler, S. F. and Sanchez, C. (2012) ‘Genetic modification; the development of transgenic ornamental plant varieties’, Plant Biotechnology Journal, 10(8), pp. 891–903. doi: 10.1111/j.1467-7652.2012.00693.x.

Chopra, V. L. (2005) ‘Mutagenesis: Investigating the process and processing the outcome for crop improvement’, Current Science, 89(2), pp. 353–359.

Delgado-Paredes, G. E. et al. (2017) ‘Development and Agronomic Evaluation of In Vitro Somaclonal Variation in Sweet Potato Regenerated Plants from Direct Organogenesis of Roots’, Pelagia Research Library Asian Journal of Plant Science and Research, 7(1), pp. 39–48. Available at: www.pelagiaresearchlibrary.com.

Duncan, R. R., Waskom, R. M. and Nabors, M. W. (1995) ‘In vitro screening and field evaluation of tissue-culture-regenerated sorghum (Sorghum bicolor (L.) Moench) for soil stress tolerance’, Euphytica: International Journal of Plant Breeding, 85(1), pp. 373–380. doi: 10.1007/BF00023970.

Dwimahyani, I. (2007) ‘Pemgaruh Iradiasi sinar gamma terhadap pertumbuhan dan pembungaan stek pucuk krisan (Chrysanthemum morifolium Ramat ) cv,pink Fiji’, Jurnal Ilmiah Aplikasi Isotop dan Radiasi, 3(1), pp. 67–79.

Eeckhaut, T. G. R. et al. (2004) ‘Chemically induced polyploidization in Spathiphyllum wallisii Regel through somatic embryogenesis’, Plant Cell, Tissue and Organ Culture, 78(3), pp. 241–246. doi: 10.1023/B:TICU.0000025659.19232.04.

Enny Sudarmonowati et al. (2018) Biodiversitas,Perakitan Klon Unggul dan Pemanfaatan Bioresources Ubi Kayu Untuk Mendukung Ketahanan Pangan.

FAO/IAEA (2017) FAO/IAEA mutant variety database of the joint FAO/IAEA division of nuclear techniques in food and agriculture. Available online: http://mvd.iaea.org/. Accessed March 2017

Greene, E. A. et al. (2003) ‘Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis’, Genetics, 164(2), pp. 731–740.

Hanafiah, D. S. et al. (2012) ‘Penggunaan Mikro Irradiasi Sinar Gamma untuk Meningkatkan Keragaman Genetik pada Varietas Kedelai Argomulyo [Glycine max (L) Merr]’, Jurnal Natur Indonesia, 14(1), p. 80. doi: 10.31258/jnat.14.1.80-85.

Handayati.W (2013) ‘Perkembangan Pemuliaan Mutasi Tanaman Hias di Indonesia’, Jurnal Ilmiah Aplikasi Isotop dan Radiasi, 9(1), pp. 67–80.

Handayati.W, and Purnamaningsih, I. M. R. (2001) ‘Peningkatan Keragaman Genetik Mawar Mini Melalui Kultur in vitro dan iradiasi sinar gamma’, Berita Biologi, 5(April), pp. 365–371.

Hartati et al. (2012) ‘Karakter Umbi Dan Nutrisi Tujuh Genotip Ubi Kayu (Manihot esculenta)’, jurnal agricola, (2), pp. 101–110.

Hasbullah, N. A. et al. (2012) ‘Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii’, Horticultura Brasileira, 30(2), pp. 252–257. doi: 10.1590/s0102-05362012000200012.

Hase, Y. et al. (2009) ‘Efficient induction of flower-color mutants by ion beam irradiation in petunia seedlings treated with high sucrose concentration’, Plant Biotechnology, 27(1), pp. 99–103. doi: 10.5511/plantbiotechnology.27.99.

Hase, Y. et al. (2012) ‘Development of an efficient mutagenesis technique using ion beams: Toward more controlled mutation breeding’, Plant Biotechnology, 29(3), pp. 193–200. doi: 10.5511/plantbiotechnology.12.0106a.

Hisamura, A. et al. (2016) ‘Breeding of of Summer-Autumn Summer-Autumn Flowering Flowering Chrysanthemum Breeding Hakuryo a little little generation generation of of malformed malformed flower with a with flower’, 49, p. 2016.

Ibrahim, R. et al. (2018) Chapter 8 Mutation Breeding in Ornamentasl, Developments in Crop Science. doi: 10.1016/B978-0-444-42786-1.50014-3.

Khan, S. J. et al. (2000) ‘Development of sugarcane mutants through in vitro mutagenesis’, Pakistan Journal of Biological Sciences, 3(7), pp. 1123–1125.

Kharkwal, M. C., Pandey, R. N. and Pawar, S. E. (2004) ‘Mutation Breeding for Crop Improvement’, Plant Breeding, (December), pp. 601–645. doi: 10.1007/978-94-007-1040-5_26.

Kharkwal, M. C. and Shu, Q. Y. (2009) ‘The role of induced mutations in world food security’, Induced Plant Mutations in the Genomics Era, pp. 33–38.

Kim, J. H. et al. (2004) ‘Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds’, Journal of Plant Biology, 47(4), pp. 314–321. doi: 10.1007/BF03030546.

Krishna, H. et al. (2016) ‘Somaclonal variations and their applications in horticultural crops improvement’, 3 Biotech. doi: 10.1007/s13205-016-0389-7.

Kurniasih, D. et al. (2016) ‘Variabilitas Genotipe-Genotipe Mutan Krisan (Dendranthema grandiflora Tzvelv.) Generasi MV5 Hasil Irradiasi Sinar Gamma’, Agrikultura, 27(3), pp. 173–178. doi: 10.24198/agrikultura.v27i3.10881.

Lakamisi, H. (2010) ‘Prospek agribisnis tanaman hias dalam pot (POTPLANT)’, Agrikan: Jurnal Ilmiah Agribisnis dan Perikanan, 3(2), p. 55. doi: 10.29239/j.agrikan.3.2.55-59.

Lestari. E.G (2006) ‘R E V I E W : In Vitro Selection and Somaclonal Variation for Biotic and Abiotic Stress Tolerance’, Biodiversitas, 7(i), pp. 297–301. doi: 10.13057/biodiv/d070320.

Lestari. E.G (2016) Pemuliaantanaman Melalui Induksi Mutasi Dan Kultur In Vitro. Edited by Mariska and Sutrisno. IAARD Press. 60 hal

Lestari.E.G et al. (2010) ‘Induksi Mutasi dan Keragaman Somaklonal untuk Meningkatkan Ketahanan Penyakit Blas Daun pada Padi Fatmawati’, Buletin Plasma Nutfah, 16(2), pp. 96–102. Available at: http://www.researchgate.net/publication/265290221.

Lestari.E.G, Dewi, I. S. and Yunita.R (2016) ‘Seleksi Galur Mutan Padi Fatmawati Tahan terhadap Penyakit Blas dan Evaluasi Karakter Agronomi di Rumah Kaca dan di Lahan Sawah’, Buletin Plasma Nutfah, 21(2), pp. 79–88.

Lestari, E. G. (2012) ‘Combination of Somaclonal Variation and Mutagenesis for Crop Improvement’, Agrobiogen, 8(1), pp. 38–44.

Lestari, E. G. et al. (2019) ‘Genetic x environment interaction on agronomic characters and yield components of sweet sorghum (Sorghum bicolor) mutant strain’, Biodiversitas. Society for Indonesian Biodiversity, 20(12), pp. 3705–3714. doi: 10.13057/biodiv/d201233.

Mahendran, G. and Narmatha Bai, V. (2016) ‘Direct somatic embryogenesis of Malaxis densiflora (A. Rich.) Kuntze’, Journal of Genetic Engineering and Biotechnology. Academy of Scientific Research & Technology, 14(1), pp. 77–81. doi: 10.1016/j.jgeb.2015.11.003.

Maluszynski, M. et al. (2000) ‘Officially Released Mutant Varieties - The FAO/IAEA Database’, Mutation breeding, 12, pp. 1–12.

Martin, K. P. (2004) ‘Plant regeneration through somatic embryogenesis in medicinally important Centella asiatica L.’, In Vitro Cellular and Developmental Biology - Plant, 40(6), pp. 586–591. doi: 10.1079/IVP2004573.

Mba, C. (2013) ‘Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture’, Agronomy, 3(1), pp. 200–231. doi: 10.3390/agronomy3010200.

Mo, L. et al. (2020) ‘Colchicine-induced polyploidy in rhododendron fortunei lindl’, Plants, 9(4). doi: 10.3390/plants9040424.

Mujib, A. (2015) ‘Somatic embryogenesis in ornamentals and its applications’, Somatic Embryogenesis in Ornamentals and Its Applications, (August 2018), pp. 1–267. doi: 10.1007/978-81-322-2683-3.

Natarajan, A. T. (2005) ‘Chemical mutagenesis: From plants to human’, Current Science, 89(2), pp. 312–317. doi: 10.1029/JC089iC06p10431.

Nishihara M and T, N. (2010) Chapter 29 Genetic Engineering of Novel Flower Colors in Floricultural Plants: Recent Advances via Transgenic Approaches, Protocols for in vitro Propagation of ornamentas Plants. doi: 10.1007/978-1-60327-114-1.

Noman, A. et al. (2017) ‘Biotechnological advancements for improving floral attributes in ornamental plants’, Frontiers in Plant Science, 8(April), pp. 1–15. doi: 10.3389/fpls.2017.00530.

Okamura, M. et al. (2013) ‘Crossbreeding of a metallic color carnation and diversification of the peculiar coloration by ion-beam irradiation’, Euphytica, 191(1), pp. 45–56. doi: 10.1007/s10681-012-0859-x.

Okamura, M. et al. (2014) ‘Tissue-dependent somaclonal mutation frequencies and spectra enhanced by ion beam irradiation in chrysanthemum’, Euphytica, 202(3), pp. 333–343. doi: 10.1007/s10681-014-1220-3.

Parry, M. A. J. et al. (2009) ‘Mutation discovery for crop improvement’, Journal of Experimental Botany, 60(10), pp. 2817–2825. doi: 10.1093/jxb/erp189.

Patil, U. H., Deshmukh, G. N. and Kazi, N. A. (2015) ‘Mutation Breeding in Chrysanthemum (Dendranthema grandiflora T.)’, Asian journal of multidisciplinary studies, 3(4), pp. 25–27.

Pratomo (2015) ‘Aspek Sosial Ekonomi dan Potensi Agribisnis Bunga Krisan di Kabupaten Pasuruan JawaTimur’, Aspek Sosial Ekonomi dan Potensi Agribisnis Bunga Krisan di Kabupaten Pasuruan JawaTimur, 4(2), pp. 70–76. doi: 10.29244/jhi.4.2.70-76.

Purnamaningsih.R (2002) ‘Regenerasi tanaman melalui embriogenesis somatik dan beberapa gen yang mengendalikannya’, Buletin AgroBio, 5(2), pp. 51–58.

Purnamaningsih, R. and Hutami, S. (2016) ‘Increasing Al-Tolerance of Sugarcane Using Ethyl Methane Sulphonate and in Vitro Selection in the Low pH Media’, HAYATI Journal of Biosciences. Elsevier Ltd, 23(1), pp. 1–6. doi: 10.1016/j.hjb.2016.01.006.

PurwatiI, R. D., Harran, S. and Sudarsono (2007) ‘In Vitro Selection of Abaca for Resistance to Fusarium oxysporum f.sp. cubense’, HAYATI Journal of Biosciences, 14(2), pp. 65–70. doi: 10.4308/hjb.14.2.65.

Qosim, W. A. et al. (2016) ‘Pengaruh Mutagen Etil Metan Sulfonat terhadap Kapasitas Regenerasi Tunas Hibrida Phalaenopsis In Vitro’, Jurnal Hortikultura, 22(4), p. 360. doi: 10.21082/jhort.v22n4.2012.p360-365.

Qosim, W. A. et al. (2007) ‘Pengaruh Iradiasi Sinar Gamma terhadap Kapasitas Regenerasi Kalus Nodular Tanaman Manggis’, HAYATI Journal of Biosciences. Institut Pertanian Bogor, 14(4), pp. 140–144. doi: 10.4308/hjb.14.4.140.

Raina, A. et al. (2016) ‘Role of Mutation Breeding in Crop Improvement- Past, Present and Future’, Asian Research Journal of Agriculture, 2(2), pp. 1–13. doi: 10.9734/ARJA/2016/29334.

Ramadanti, N. A. et al. (2020) ‘Molecular Characteristics of Cassava Carvita 25 Somaclonal Variant Using SSR Marker’, Jurnal ILMU DASAR, 21(2), p. 87. doi: 10.19184/jid.v21i2.9396.

Sakamoto, K. et al. (2016) ‘Production of Production of mutant line with early flowering flowering at at a low low temperature temperature in in by C-ion irradiation chrysanthemum cultivar cultivar induced induced by spray-type chrysanthemum’, 49, p. 2016.

Sanjaya, L., Marwoto, B. and Soehendi, R. (2015) ‘Membangun Industri Bunga Krisan Yang Berdaya Saing Melalui Pemuliaan Mutasi’, Pengembangan Inovasi Pertanian, 8(1), pp. 43–54.

Sato, M., Hosokawa, M. and Doi, M. (2011) ‘Somaclonal variation is induced de novo via the tissue culture process: A study quantifying mutated cells in Saintpaulia’, PLoS ONE, 6(8). doi: 10.1371/journal.pone.0023541.

Sattler, M. C., Carvalho, C. R. and Clarindo, W. R. (2016) ‘The polyploidy and its key role in plant breeding’, Planta. Springer Berlin Heidelberg, 243(2), pp. 281–296. doi: 10.1007/s00425-015-2450-x.

Schum, A. (2003) ‘Mutation breeding in ornamentals: An efficient breeding method?’, Acta Horticulturae, 612, pp. 47–60. doi: 10.17660/ActaHortic.2003.612.6.

Shafiei and Abdollah Hatamzadeh, P. A. and H. S. L. (2019) ‘Mutation Induction in Chrysanthemum Cut Flowers Using’, Journal of Ornamental Plants, 9(2), pp. 143–151. Available at: www.jornamental.iaurasht.ac.ir.

Sianipar, N. F. et al. (2015) ‘Genetic Variation of the First Generation of Rodent Tuber ( Typhonium flagelliforme Lodd .) Mutants Based on RAPD Molecular Markers’, HAYATI Journal of Biosciences, 22(2), pp. 98–104. doi: 10.4308/hjb.22.2.98.

Sukmadjaja, D., Purnamaningsih, R. and Priyatno, T. P. (2016) ‘Seleksi In Vitro dan Pengujian Mutan Tanaman Pisang Ambon Kuning untuk Ketahanan terhadap Penyakit Layu Fusarium’, Jurnal AgroBiogen, 9(2), p. 66. doi: 10.21082/jbio.v9n2.2013.p66-76.

Suprasanna, S.J, M. and S.G, B. (2015) ‘Induced Mutation and Crop Improvement’, Plant Biology and Biotechnology: Plant Diversity, Organization, Function and Improvement, 1, pp. 1–827. doi: 10.1007/978-81-322-2286-6.

Viana, V. E. et al. (2019) ‘Mutagenesis in Rice: The Basis for Breeding a New Super Plant’, Frontiers in Plant Science, 10(November), pp. 1–28. doi: 10.3389/fpls.2019.01326.

Xing, S. H. et al. (2011) ‘Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don’, Journal of Biomedicine and Biotechnology, 2011. doi: 10.1155/2011/793198.

Yamaguchi, H. et al. (2008) ‘Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum’, Breeding Science, 58(3), pp. 331–335. doi: 10.1270/jsbbs.58.331.

Yamaguchi, H. et al. (2009) ‘Mutagenic effects of ion beam irradiation on rice’, Breeding Science, 59(2), pp. 169–177. doi: 10.1270/jsbbs.59.169.

Yamaguchi, H. (2018) ‘Mutation breeding of ornamental plants using ion beams’, Breeding Science, 68(1), pp. 71–78. doi: 10.1270/jsbbs.17086.


Refbacks

  • There are currently no refbacks.