MEKANISME RESPON TANAMAN TERHADAP CEKAMAN KEKERINGAN

Dwi Setyo Rini, Budiarjo Budiarjo, Indra Gunawan, Radi Hidayat Agung, Rina Munazar
| Abstract views: 327 | PDF views: 233

Abstract

Drought stress is the major abiotic stress affecting plant growth and productivity. This review emphasizes the discussion of plant response mechanisms when experiencing drought stress. The plant develops the strategies under water deficit conditions in the form of drought
escape, drought avoidance, drought tolerance, or a combination of those strategies. Drought stimulates a wide variety of plant adaptation by changes in morphological, physiological, biochemical, and molecular levels. This mechanism is organized by a complex signaling network system comprising of signal perception, signal transduction pathway, and the regulation of drought-responsive genes expression.

 

 

 

Keywords

drought stress, plant response mechanisms, signaling network

Full Text:

PDF

References

Agarwal, P., Agarwal, P.K., Joshi, A.J., Sopory, S.K. and Reddy, M.K., 2010. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports, 37, pp. 1125–1135.

Anjum, S. A., Xie, Y., Wang, L. C., Saleem, M. F., Man, C. and Lei, W., 2011. Morphological, physiological and biochemical responses of plants to drought stress.

African Journal of Agricultural Research, 6, pp. 2026–2032.

Apel, K. and Hirt, H., 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, pp. 373–399. doi: 10.1146/annurev.arplant.55.031903.141701

Asano, T., Hayashi, N., Kikuchi, S. and Ohsugi, R., 2012. CDPK-mediated abiotic stress signaling. Plant Signal Behav, 7, pp. 817–821.

Ali, F., Bano, A. and Fazal, A., 2017. Recent methods of drought stress tolerance in plants. Plant Growth Regul, 82, pp. 363–375. https://doi.org/10.1007/s10725-017-0267-2.

Anjum, S.A., Xie, X. and Wang, L., 2011. Morphological,

physiological, and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, pp. 2026–2032.

Barnabas, B., Jäger, K. and Fehér, A., 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ, 31, pp. 11–38.

Basu, D. and Haswell, E.S., 2020. The Mechanosensitive Ion Channel MSL10 Potentiates Responses to Cell Swelling in Arabidopsis Seedlings. Current Biology, doi: 10.1016/j.cub.2020.05.015

Basu, S., Ramegowda, V., Kumar, A. and Pereira, A., 2016. Plant adaptation to drought stress. F1000Research, 5, F1000 Faculty Rev-1554. doi.org/10.12688/f1000research.7678.1

Berry, P., Ramirez villegas, J. and Branseley, H., 2013. Regional impacts of climate change on agriculture and the role of adaptation. Plant Genetic Resource and Climate Change, 4, p.78.

Blum, A., 1988. Plant breeding for stress environments. CRC Press: Boca Raton, FL.

Brauer, E. K., Ahsan, N., Dale, R., Kato, N., Coluccio, A. E., Piñeros, M. A., et al., 2016. The Raf-like kinase ILK1 and the high affinity K+ transporter HAK5 are required for innate immunity and abiotic stress response. Plant Physiology, 171, pp. 1470–1484. doi: 10.1104/pp.16. 00035.

Bray, E.A., 2001. Plant Response to Water-deficit Stress. Encyclopedia of Life Sciences. John Wiley & Sons, Ltd., Chichester.

Burg, M.B. and Ferraris, J.D., 2008. Intracellular organic

osmolytes: function and regulation. The Journal of biological chemistry, 283(12), pp. 7309–7313. https://doi.org/10.1074/jbc.R700042200

Chamarthi S.K., Belko N., Togola A., Fatokun C.A. and Boukar O., 2019. Genomics-Assisted Breeding for Drought Tolerance in Cowpea. In: Rajpal, V., Sehgal, D., Kumar, A., Raina, S., (eds) Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II. Sustainable Development and Biodiversity, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-99573-1_10.

Chowdhury, J.A., Karim, M.A., Khaliq, Q.A. and Ahmed, A.U., 2017. Effect of drought stress on bio-chemical change and cell membrane stability of soybean genotypes. Bangladesh Journal of Agricultural Research, 42(3), pp. 475–485.

Cominelli, E., Galbiati, M. and Tonelli, C., 2010. Transcription factors controlling stomatal movements and drought tolerance. Transcription, 1, pp 41–45.

Comstock, J., 2002. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. Jounal of Experimental Botany, 53, pp. 195–200.

Cui, Y., Mao, R., Chen, J. and Guo, Z., 2019. Regulation

Mechanism of MYC Family Transcription Factors in Jasmonic Acid Signalling Pathway on Taxol Biosynthesis. International Journal of Molecular Sciences, 20(8), pp. 1843; https://doi.org/10.3390/ijms20081843

Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. and Abrams, S. R., 2010. Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology, 61, pp. 651–679. doi: 10.1146/annurev-arplant-042809-112122

de Carvalho, M.H.C., 2008. Drought stress and reactive oxygen species. Production, scavenging and signaling. Plant Signaling & Behavior, 3(3), pp. 156–165.

Drobak, B.K. and Watkins, P.A., 2000. Inositol (1,4,5)

trisphosphate production in plant cells: an early response to salinity and hyperosmotic stress. FEBS Lett, 481(3), pp. 240–244.

Dubos C., Stracke R., Grotewold E., Weisshaar B., Martin C. and Lepiniec L., 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science, 15, pp. 573–581. doi: 10.1016/j.tplants.2010.06.005.

Duque, A. S., de Almeida, A. M., da Silva, A. B., da Silva, J. M., Farinha, A. P., Santos, D., Fevereiro, P. and Araújo, S.S., 2013. Chapter 3 Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive, in Abiotic Stress: Plant Responses and Applications in Agriculture, eds Vahdati K., Leslie C.(Croatia: INTECH Open; ), pp. 49–102.

Edel, K.H. and Kudla, J., 2015. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium, 57, pp. 231–246.

FAO., 2019. Trees, forests and land use in drylands: the first global assessment – Full report. FAO Forestry Paper No. 184. Rome.

Finkelstein, R.R., Gampala, S.S. and Rock, C.D., 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell, 14(Suppl.), pp. S15–S45.

Finkelstein, R., Reeves, W., Ariizumi, T. and Steber, C., 2008. Molecular aspects of seed dormancy. Annual Review of Plant Biology, 59, pp. 387–415. doi: 10.1146/annurev.arplant. 59.032607.092740

Fleury, D., Jefferies, S., Kuchel, H. and Langridge, P., 2010. Genetic and genomic tools to improve drought-tolerance in wheat. Jounal of Experimental Botany, 61(12), pp. 3211–3222. https://doi.org/

Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M., Tran, L.S.P., Yamaguchi-Shinozaki, K. and Shinozaki, K., 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal, 39, pp. 863–876.

Fujita, Y., Fujita, M., Shinozaki, K. and Yamaguchi-Shinozaki, K., 2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research, 124(4), pp. 509–525. doi: 10.1007/s10265-011-0412-3.

Furlan, A., Llanes, A., Luna, V. and Castro, S., 2012.

Physiological and biochemical responses to drought stress and subsequent rehydration in the symbiotic association peanut-Bradyrhizobium sp. ISRN Agronomy, 10.5402/2012/318083.

Hohmann, S., 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 77(3), pp. 300–372.

Hou, C., Tian, W., Kleist, T., He, K., Garcia, V., Bai, F., Hao, Y., Luan, S. and Li, L., 2014. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Research, 24, pp. 632–635.

Hu, B., Yao, H., Peng, X., Wang, R., Li, F., Wang, Z., Zhao, M. and Jin, L., 2019. Overexpression of Chalcone synthase improves flavonoid accumulation and drought tolerance in tobacco. Preprints, 2019060103 (doi: 10.20944/preprints201906.0103.v1).

Huang, D., Wu, W., Abrams, Z.R. and Cutler, A.J., 2008. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. Journal of Experimental Botany, 59(11), pp. 2991–3007.

Jain, M., Nagar, P., Goel, P., Singh, A.K., Kumari S. and

Mustafiz, A., 2018. Second messengers: central regulators in plant abiotic stress response. In: Zargar, S., Zargar, M., (eds) Abiotic stress-mediated sensing and signaling in plants: An omics perspective. Springer, Singapore. https://doi.org/10.1007/978-981-10-7479-0_2

Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R. and Panneerselvam, R., 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agricultural Biology, 11, pp. 100–105.

Jan, A.T., Singhal, P. and Haq, Q., 2012. Plant abiotic stress: Deciphering remedial strategies for emerging problem. Journal Plant Interact, 8, pp. 1–12. 10.1080/17429145.2012.702226.

Jayant, K.S. and Sarangi, S.K., 2014. Effect of drought stress on proline accumulation in peanut genotypes. Int. J.Adv. Res., 2, pp. 301–309.

Jonak, C., Ökrész, L., Bögre, L. and Hirt, H., 2002. Complexity, cross talk and integration of plant MAP kinase signaling. Current Opinion in Plant Biology, 5, pp. 415–424.

Joshi, R.K., Bharat, S.S. and Mishra, R., 2020. Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech, 10, p. 400. https://doi.org/10.1007/s13205-020-02390-3.

Kacperska, A., 2004. Sensor types in signal transduction

pathways in plant cells responding to abiotic stressors: do they depend on stress intensity? Physiologia Plantarum, 122, pp. 159–168.

Khan, A., Sovero, V. and Gemenet, D., 2016. Genome-assisted breeding for drought resistance. Current Genomics, 17(4). DOI : 10.2174/1389202917999160211101417.

Khan, S.A., Li, M.Z., Wang, S.M. and Yin, H.J., 2018. Revisiting the role of plant transcription factors in the battle against abiotic stress. International Journal of Molecular Sciences, 19(6), pp. 1634.

Kim, W., Iizumi, T. and Nishimori, M., 2019. Global patterns of crop production losses associated with droughts from 1983 to 2009. Journal of Applied Meteorology and Climatology, 58(6), pp. 1233–1244.

Kooyers, N.J., 2015. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science, 234, pp. 155–162. doi: 10.1016/j.plantsci.2015.02.012.

Kuromori, T., Mizoi, J., Umezawa, T., Yamaguchi-Shinozaki, K. and Shinozaki, K., 2014. Drought Stress Signaling Network. In: Howell S. (eds) Molecular Biology. The Plant Sciences, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7570-5_7

Lal, R., 2016. Tenets of soil and landscape restoration. In: Chabay I, Frick M, Helgeson J (eds) Land restoration – reclaiming landscapes for a sustainable future. Elsevier Academic Press, Waltham, pp. 79–96.

Lambers, H., Chapin III, F.S. and Pons, T.L., 2008. Plant

Physiological Ecology; Springer: New York, NY, USA.

Lata, C., Muthamilarasan, M. and Prasad, M., 2015. Drought stress responses and signal transduction in plants, in Elucidation of Abiotic Stress Signaling in Plants, ed G. K. Pandey (New York, NY: Springer), pp. 195–225.

Le Gall, H., Philippe, F., Domon, J.M., Gillet, F., Pelloux, J. and Rayon, C., 2015. Cell Wall Metabolism in response to abiotic stress. Plants (Basel, Switzerland), 4(1), pp. 112–166. https://doi.org/10.3390/plants4010112

Liese, A. and Romeis, T., 2013. Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochimica et Biophysica Acta, 1833, pp. 1582–1589.

Liu, X., Wang, J. and Sun, L., 2018. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nature Communications, 9, pp. 5060.

Lü, B., Chen, F., Gong, Z-H. and Xie, H., 2007. Integrin-like protein is involved inthe osmotic stress-induced abscisic acid biosynthesis in Arabidopsis thaliana. Journal of Integrative Plant Biology, 49, pp. 540–549.

Ma, X.J., Yu, T.F. and Li, X.H. et al., 2020. Overexpression of GmNFYA5 confers drought tolerance to transgenic Arabidopsis and soybean plants. BMC Plant Biology, 20, p. 123. https://doi.org/10.1186/s12870-020-02337-z.

Maazou, A.R.S., Tu, J. and Liu, Z., 2016. Breeding for drought tolerance in maize (Zea mays L.). American Journal of Plant Sciences, 7, pp. 1858–1870.

Mannocchi, F., Todisco, F. and Vergni, L, 2003. Agricultural drought: Indices, definition and analysis. In: UNESCO/IAHS/IWIIA Symposium: The Basis of Civilization - Water Science. International Association of Hydrological Sciences, Roma.

Meena, N., Kaur, H. and Mondal, A.K., 2010. Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. Journal of Biological Chemistry, 285, pp. 12121–12132.

Meyer, B.S., 2020. Plant-water relations. AccessScience. McGraw-Hill Education. doi:10.1036/1097-8542. 525300. https://www.accessscience.com/content/plant-water-relations/525300.

Miller, G., Suzuki, N., Ciftci-Yilmaz, S. and Mittler, R., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33(4), pp. 453–467. doi: 10.1111/j.1365-3040.2009.02041.x.

Mitsuda, N. and Ohme-Takagi, M., 2009. Functional

analysis of transcription factors in Arabidopsis. Plant and Cell Physiology, 50, pp. 1232–1248. DOI: 10.1093/pcp/pcp075

Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F., 2004. Reactive oxygen gene network of plants. Trends Plant Science, 9, pp. 490–498. doi: 10.1016/j.tplants.2004.08.009

Morgan, J.M., 1984. Osmoregulation and Water Stress in Higher Plants. Annual Review of Plant Physiology, 35, pp. 299–319. 10.1146/annurev.pp.35.060184.001503

Nakashima, K., Yusuke, I. and Yamaguchi-Shinozaki, K., 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149, pp. 88–95.

Newton, R.P. and Smith, C.J., 2004. Cyclic nucleotides. Phytochemistry, 65, pp. 2423–2437.

Noman, M., Jameel, A., Qiang, W.D., Ahmad, N., Liu, W.C., Wang, F.W. and Li, H.Y., 2019. Overexpression of GmCAMTA12 Enhanced drought tolerance in Arabidopsis and Soybean. International journal of molecular sciences, p. 4849. https://doi.org/10.3390/ijms20194849.

Nuruzzaman, M., Sharoni, A. M. and Kikuchi, S., 2013. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology, 4, pp. 248. doi: 10.3389/fmicb.2013.00248

Nxele, X., Klein, A. and Ndimba, B.K., 2017. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108, pp. 261–266, doi.org/10.1016/j.sajb.2016.11.003.

Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. and Lam-Son Phan Tran, P. L.S., 2013. Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress, Journal of Experimental Botany, 64(2), pp. 445–458, https://doi.org/10.1093/jxb/ers354

Park, S. Y., Fung, P., Nishimura, N., Jensen, D.R. and Fujii, H., 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 324, pp. 1068–1071. doi: 10.1126/science.1173041.

Pospíšilová, J., Synková, H., Haisel, D. and Baťková, P., 2009. Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. Biol Plant, 53, pp. 11–20.

Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L.S., Shinozaki, K. and Yamaguchi-Shinozaki, K., 2007. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 50, pp. 54–69.

Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K., 2003. Monitoring expression profiles of rice (Oryza sativa L.) genes under cold, drought and high-salinity stresses, and ABA application using both cDNA microarray and RNA gel blot analyses. Plant Physiology, 133, pp. 1755–1767.

Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K. and Yu, G., 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 290(5499), pp. 2105–2110.

Rini, D.S., 2019. Short Communication: Sequence variation of DREB2 gene as a potential molecular marker for identifying resistant plants toward drought stress. Nusantara Bioscience, 11(1), pp 35–43.

Roca Paixão, J.F., Gillet, F.X. and Ribeiro, T.P., et al., 2019. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Scientific Reports, 9, p. 8080. https://doi.org/10.1038/s41598-019-44571-y.

Rushton, P. J., Somssich, I. E., Ringler, P. and Shen, Q. J., 2010. WRKY transcription factors. Trends in Plant Science, 15, pp. 247–258. doi: 10.1016/j.tplants.2010.02.006

Shavrukov, Y,. Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., de Groot, S., Soole, K. and Langridge, P., 2017. Early flowering as a drought escape mechanism in plants: How can it aid wheat production? Frontiers in Plant Science, 8, p. 1950. doi: 10.3389/fpls.2017.01950

Shi, J., Habben, J.E., Archibald, R.L., Drummond, B.J., Chamberlin, M.A., Williams, R.W., Lafitte, H.R. and Weers, B.P., 2015. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize. Plant Physiology, 169(1), pp. 266–282; DOI: 10.1104/pp.15.00780.

Shinozaki, K. and Yamaguchi-Shinozaki, K., 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), pp. 221–227.

Shinozaki, K., Yamaguchi-Shinozaki, K. and Seki, M., 2003. Regulatory network of gene expression in the drought and cold stress responses, Current Opinion in Plant Biology, 6, pp. 410–417.

Shinozaki, K. and Yamaguchi-Shinozaki, K., 2000. Molecular responses to dehydration and low temperature:

Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3, pp. 217–223.

Sreenivasulu, N., Harshavardhan, V.T., Govind, G., Seiler, C. and Kohli, A., 2012. Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene, 506(2), pp. 265–73.

Taishi, U., Fujita, M. and Fujita, Y., Yamaguchi-Shinozaki, K. and Shinozaki, K., 2006. Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology, 17(2), pp. 113–22.

Taj, G., Agarwal, P., Grant, M. and Kumar, A., 2010. MAPK machinery in plants. Recognition and response to different stresses through multiple signal transduction pathways. Plant Signaling & Behavior, 5(11), pp. 1370–1378.

Teuling, A.J., van Loon, A., Seneviratne, S.I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H. and Spank, U., 2013. Evapotranspiration amplifies European summer drought. Geophysical Research Letters, 40(10), pp. 2071–2075.

Thudi, M., Gaur, P.M., Krishnamurthy, L., Mir, R.R., Kudapa, H., Fikre, A., Kimurto, P., Tripathi, S., Soren, K.R., Mulwa, R., Bharadwaj, C., Datta. S., Chaturvedi, S.K. and Varshney, R.K., 2014. Genomics-assisted breeding for drought tolerance in chickpea. Functional Plant Biology, 41(11), pp. 1178–1190. doi: 10.1071/FP13318.

Touchette, B.W., Iannacone, L.R., Turner, G.E., et al., 2007. Drought tolerance versus drought avoidance: A comparison of plant-water relations in herbaceous wetland plants subjected to water withdrawal and repletion. Wetlands, 27, pp. 656–667.

https://doi.org/10.1672/ 0277-5212(2007)27[656:DTVDAA]2.0.CO;2

Tran, L.S., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K. and Yamaguchi-Shinozaki, K., 2007. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences USA, 104, pp. 20623–20628.

Turner, N.C., 2017. Turgor maintenance by osmotic adjustment, an adaptive mechanism for coping with plant water deficits. Plant, Cell & Environment, 40, pp. 1–3. doi:10.1111/pce.12839.

Tuteja, N. and Mahajan, S., 2007. Calcium signaling network in plants: an overview. Plant signaling & behavior, 2(2), pp. 79–85. https://doi.org/10.4161/psb.2.2.4176

Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and

Yamaguchi-Shinozaki, K., 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisicacid-dependent signal transduction pathway under drought and high-salinity conditions.

Proceedings of the National Academy of Sciences USA, 97, pp. 11632–11637. doi: 10.1073/pnas.190309197

Urao, T., Miyata, S., Yamaguchi-Shinozaki, K. and Shinozaki, K., 2000. Possible His to Asp phosphorelay signaling in an Arabidopsis two-component system. FEBS Letters, 478, pp. 227–232.

Varshney, R.K., Terauchi, R. and McCouch, S.R., 2014. Harvesting the promising fruits of genomics: Applying genome sequencing technologies to crop breeding. PLoS Biology, 12(6), p. e1001883.

Verma, G., Srivastava, D., Tiwari, P. and Chakrabarty, D., 2019. ROS modulation in crop plants under drought stress. In: Hasanuzzaman M, Fotopoulos V, Nahar K, Fujita M (eds) Reactive oxygen, nitrogen and sulfur species in plants. Chapter 13. https://doi.org/10. 1002/97811 19468677.ch13

Verma, R.K., Santosh Kumar, V.V., Yadav, S.K., Pushkar, S., Rao, M.V. and Chinnusamy, V., 2019. Overexpression of ABA Receptor PYL10 Gene Confers Drought and Cold Tolerance to Indica Rice. Frontiers Plant Science, 10, p. 1488. doi: 10.3389/fpls.2019.01488

Vikram, P., Kumar, A., Singh, A.K. and Singh, N.K., 2012. Rice: genomics-assisted breeding for drought tolerance. In: Tuteja, N., Gill, S.S., Tiburico, A.F., Tuteja, R., (eds). Improving crop resistance to abiotic stress. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 715–731.

Wang, N.N., Xu, S.W., Sun, Y.L. Liu, D., Zhou, L., Li, Y. and Li, X.B., 2019. The cotton WRKY transcription factor (GhWRKY33) reduces transgenic Arabidopsis resistance to drought stress. Scientific Reports, 9(724). https://doi.org/10.1038/s41598-018-37035-2

Wang, W. X., Vinocur, B., Shoseyov, O. and Altman, A., 2001. Biotechnology of plant osmotic stress tolerance: physiological and molecular considerations. Acta Horticulturae, 560, pp. 285–292. doi: 10.17660/ActaHortic. 2001.560.54

Wang, X. and Chapman, K.D., 2013. Lipid signaling in plants. Frontiers Plant Science, 4(2).

Wasternack, C. and Hause, B., 2002. Jasmonates and octadecanoids – signals in plant stress response and development. In: Moldave K. ed. Progress in nucleic acid research and molecular biology. New York, Academic press, pp. 165–222.

Wie, T., Deng, K., Liu, D., Gao, Y., Liu, Y., Yang, M., Zhang, L., Zheng, X., Wang, C., Song, W., Chen, C. and Zhang, Y., 2016. Ectopic Expression of DREB Transcription Factor, AtDREB1A, confers tolerance to drought in transgenic Salvia miltiorrhiza. Plant and Cell Physiology, 57, pp. 1593–1609. doi: 10.1093/pcp/pcw084.

Wilkins, K.A., Matthus. E., Swarbreck. S.M., Davies, J.M., 2016. Calcium-Mediated Abiotic Stress Signaling in Roots. Frontiers Plant Science, 7, p. 1296. doi: 10.3389/fpls.2016.01296

Würschum, T., Reif, J.C., Kraft, T., Janssen, G. and Zha, Y., 2013. Genomic selection in sugar beet breeding populations. BMC Genetics, 14, p. 85, 10.1186/1471-2156-14-85.

Xue, G.P., Way, H.M., Richardson, T., Drenth, J., Joyce, P.A. and McIntyre, C.L., 2011. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant, 4(4). pp 697–712.

Yadav, N., Taunk, J., Rani, A., Aneja, B. and Yadav, R.C., 2011. Role of transcription factors in abiotic stress tolerance in crop plants. Clim. Chang. Plant Abiotic Stress Tolerance, pp. 605–640.

Yadav, S. and Mishra, A., 2020. Ectopic expression of C4

photosynthetic pathway genes improves carbon assimilation and alleviate stress tolerance for future climate change. Physiology and Molecular Biology of Plants, 26, pp. 195–209. https://doi.org/10.1007/s12298-019-00751-8.

Yadav, S. and Sharma, K.D., 2016. Molecular and morphophysiological analysis of drought stress in plants. In: Rigobelo EC, ed. Plant growth. Rijeka: InTech, pp. 149–173.

Yang, Y., Chi, Y., Wang, Z., Zhou, Y., Fan, B. and Chen, Z., 2016. Functional analysis of structurally related soybean GmWRKY58 and GmWRKY76 in plant growth and development. Journal of Experimental Botany, 67(15), pp. 4727–4742. https://doi.org/10.1093/jxb/erw252

Yao, X., Ma, H., Wang, J. and Zhang, D,. 2007. Genome-wide comparative analysis and expression pattern of TCP gene families in Arabidopsis thaliana and Oryza sativa. Journal of Integrative Plant Biology, 49, pp. 885–897.

Ye, Y., Ding, Y., Jiang, Q., Wang, F., Sun, J. and Zhu, C., 2017. The role of receptor‐like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Reports, 36, pp. 235–242.

Yi, X.P., Zhang, Y.L., Yao, H.S., Luo, H.H., Gou, L., Chow, W.S. and Zhang, W.F., 2016. Rapid recovery of photosynthetic rate following soil water defcit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems. Journal of Plant Physiology, 193, pp. 23–34.

Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T. and Krichilsky, B., et al., 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 514, pp. 367–371.

Zhang, J.Z., Creelman, R.A. and Zhu, J-K., 2004. From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiology, 135, pp. 615–621.

Zhao, X.Y., Qi, C.H., Jiang, H., You, C.X., Guan, Q.M., Ma, F.W., Li, Y.Y. and Hao, Y.J., 2019. The MdWRKY31 transcription factor binds to the MdRAV1 promoter to mediate ABA sensitivity. Horticulture Research, 6(66). https://doi.org/10.1038/s41438-019-0147-1

Zheng, X., Chen, B., Lu, G. and Han, B., 2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 379, pp. 985–989.

Zhou, Y., He, R. and Guo, Y. et al., 2019. A novel ABA functional analogue B2 enhances drought tolerance in wheat. Scientific Reports, 9, p. 2887 https://doi.org/10.1038/s41598-019-39013-8

Zhu, J.K., 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, pp. 247–273. doi:10.1146/annurev.arplant.53.091401.143329.

Zlatev, Z. and Lidon, F.C., 2012. An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture, 24, pp. 57–72.

Zlatev, Z.S., 2005. Effects of water stress on leaf water relations ofyoung bean plants. Journal of Central European Agriculture, 6, pp. 5–14.


Refbacks

  • There are currently no refbacks.