The Opportunity of Developing Microalgae Cultivation Techniques in Indonesia

Evi Siti Sofiyah, Iva Yenis Septiariva, I Wayan Koko Suryawan
| Abstract views: 2485 | PDF views: 1103

Abstract

The rate of population growth which is relatively rapidly increasing in Indonesia, will require increased fuel. The depletion of the availability of fossil fuels causes the search for the other natural resources needed to become a renewable energy source. One of the significant changes today is microalgae. The application of the algal aquaculture system has been widely applied in the world. The media used in cultivation also varies, one of which is wastewater. The composition of biodiesel energy in Indonesia is increasing and is starting to become the people's choice. Indonesia, which is rich in natural resources, especially the high biodiversity of microalgae, causes microalgae's potential use to be very high. Many studies report the explosion of algal participation in many parts of Indonesia. Research concerning the cultivation of microalgae has been widely successful in Indonesia. The use of microalgae is already available in the field with domestic water treatment applications. The conversion of microalgae into biodiesel also successfully met the requirements of SNI 04-7182-2006.

Keywords

Microalgae cultivation; energy; wastewater treatment; biodiesel

Full Text:

PDF

References

Adarme-Vega, T. C., Thomas-Hall, S. R., Schenk, P. M. 2014. Towards sustainable sources for omega-3 fatty acids production. Current opinion in biotechnology 26: 14-18.

Amrei, D. H., Nasernejad, B., Ranjbar, R., Rastegar, S. 2014. An integrated wavelength-shifting strategy for enhancement of microalgal growth rate in PMMA-and polycarbonate-based photobioreactors. European journal of phycology 49(3): 324-331.

Amrei, H. D., Nasernejad, B., Ranjbar, R., Rastegar, S. 2014. Spectral shifting of UV-A wavelengths to blue light for enhancing growth rate of cyanobacteria. Journal of applied phycology 26(3): 1493-1500.

Aprianti, N. S., Sulardiono, B., Nitisupardjo, M. 2015. Kajian Tentang Fitoplankton Yang Berpotensi Sebagai Habs (Harmful Algal Blooms) Di Muara Sungai Plumbon, Semarang. Management of Aquatic Resources Journal 4(3): 132-138.

Apritama, M. R., Suryawan, I., Afifah, A. S., & Septiariva, I. Y. (2020). Phytoremediation of effluent textile wwtp for NH3-N and Cu reduction using pistia stratiotes. Plant Archives. 21(1).

Astuti, W., Suripto, S. P. A., Japa, L. 2017. Komunitas Mikroalga di Perairan Sungai dan Muara Sungai Pelangan Kecamatan Sekotong Kabupaten Lombok Barat. Jurnal Biologi Tropis 17(1): 76-86.

Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176(3-4): 227-235.

Azhar, A., Dharma, A., Chaidir, Z., Yanti, S., Nasir, N. 2017. Integrasi Bioremediasi Limbah Peternakan Sapi dan Kultivasi Mikroalga Chlorella vulgaris dan Chlorella pyrenoidosae. Jurnal Katalisator 2(2): 67-78.

Azimatun, N. M. M. 2014. Potensi mikroalga sebagai sumber pangan fungsional di Indonesia (overview). Teknik Kimia UPN Yogyakarta. Eksergi 11(2): 1-6.

Baihaqi, B., Rahman, M., Zulfahmi, I., Hidayat, M. 2018. Bioremediasi limbah cair kelapa sawit dengan menggunakan Spirogyra sp. BIOTIK: Jurnal Ilmiah Biologi Teknologi dan Kependidikan 5(2): 125-134.

Baird, M. E., Middleton, J. H. 2004. On relating physical limits to the carbon: nitrogen ratio of unicellular algae and benthic plants. Journal of Marine Systems 49(1-4): 169-175.

Barokah, G. R., Putri, A. K., Gunawan, G. 2017. Kelimpahan Fitoplankton Penyebab Hab (Harmful Algal Bloom) di Perairan Teluk Lampung pada Musim Barat dan Timur. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan 11(2): 115-126.

Batten, D. F., Campbell, P. K., Threlfall, G. 2011. Resource potential of algae for sustainable biodiesel production in the apec economies. Report prepared for the APEC Energy Working Group under EWG, 18, 2009.

Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Raymundo, A. 2017. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal research 26: 161-171.

Bui, X. T., Nguyen, T. T., Nguyen, D. D., Dao, T. S. 2018. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor. Journal of environmental management 219: 1-8.

Caporgno, M. P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J., Bengoa, C. 2015. Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane. Algal Research 10: 232-239.

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology advances 25(3): 294-306.

Choirun, A., Sari, J., Hikmah, S., Iranawati, F. 2015. Identifikasi Fitoplankton Spesies Harmfull Algae Bloom (HAB) Saat Kondisi Pasang di Perairan Pesisir Brondong, Lamongan, Jawa Timur. Jurnal Administrasi dan Kebijakan Kesehatan Indonesia 25(2): 58-66.

Delgadillo-Mirquez, L., Lopes, F., Taidi, B., Pareau, D. 2016. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture. Biotechnology Reports 11: 18-26.

Delrue, F., Alaux, E., Moudjaoui, L., Gaignard, C., Fleury, G., Perilhou, A., Sassi, J. F. 2017. Optimization of Arthrospira platensis (Spirulina) growth: from laboratory scale to pilot scale. Fermentation 3(4): 59.

Diansyah, G. 2018. Kultivasi mikroalga Chaetoceros sp. dan Spirulina sp. untuk potensi biodiesel. Maspari Journal: Marine Science Research 10(2): 123-130.

Durborow, R. M., Crosby, D. M., Brunson, M. W. 1997. Ammonia in fish ponds. Journal of the Fisheries Research Board of Canada 32: 2379-2383.

ESDM, Indonesia Energy Outlook 2019, Jakarta: Kementerian Energi dan Sumber Daya Mineral. 2019

Fadhilah, N., Vembrio, L. A. W., Safira, R. H., Amiruddin, A., Sofiyah, E. S., & Suryawan, I. W. K. (2020). Modifikasi Unit Proses dalam Peningkatan Efisiensi Penyisihan Amonium. Jurnal Sumberdaya Alam dan Lingkungan, 7(2), 1-10.

Faisal, A., Usman, T., Alimuddin, A. H. 2015. Transesterifikasi Langsung Mikroalga (Chlorella, Sp.) dengan Radiasi Gelombang Mikro. Jurnal Kimia Khatulistiwa 4(2): 76-80.

Fauziah, A., Bengen, D. G., Kawaroe, M., Effendi, H., Krisanti, M. 2019. Spatio-temporal distribution of microalgae producing chlorophyll and carotenoid pigments in Bali Strait, Indonesia. Biodiversitas Journal of Biological Diversity 20(1): 61-67.

Fernández, F. A., Camacho, F. G., Chisti, Y. 1999. Photobioreactors: light regime, mass transfer, and scaleup. In Progress in industrial microbiology 35:231-247.

Fithriani, D., Amini, S., Melanie, S., Susilowati, R. 2015. Uji Fitokimia, Kandungan Total Fenol Dan Aktivitas Antioksidan Mikroalga Spirulina Sp., Chlorella Sp., dan Nannochloropsis Sp. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan 10(2): 101-109.

Flynn, K. J. 1991. Algal carbon–nitrogen metabolism: a biochemical basis for modelling the interactions between nitrate and ammonium uptake. Journal of Plankton Research 13(2): 373-387.

Franco, M. C. 2014. Batch cultivation of microalgae in the Labfors 5 Lux Photobioreactor with LED Flat Panel Option. Электрон. дан. Режим доступа URL: http://www. inforsht. com/images/downloads/application_notes_photosynthesis_biofuel/Batch _cultivation_of_microalgea_in_the_Labfors_5_Lux_photobioreactor_ (en). pdf.

Fukuda, S. Y., Iwamoto, K., Atsumi, M., Yokoyama, A., Nakayama, T., Ishida, K. I., Shiraiwa, Y. 2014. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy. Journal of plant research 127(1): 79-89.

Fulazzaky, M. A., Gany, A. H. A. 2009. Challenges of soil erosion and sludge management for sustainable development in Indonesia. Journal of environmental management 90(8): 2387-2392.

Gao, F., Li, C., Yang, Z. H., Zeng, G. M., Feng, L. J., Liu, J. Z., Cai, H. W. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological engineering, 92, 55-61.

Hanif, M. 2016. Perancangan Proses Konversi Mikroalga Menjadi Biofuel sebagai Inovasi Teknologi Ramah Lingkungan. Jurnal Teknologi Lingkungan 16(1): 1-8.

Hanifzadeh, M. M., Sarrafzadeh, M. H., Tavakoli, O. 2012, March. Carbon dioxide biofixation and biomass production from flue gas of power plant using microalgae. In 2012 Second Iranian Conference on Renewable Energy and Distributed Generation (pp. 61-64). IEEE.

Harahap, P. S., Susanto, A. B., Susilaningsih, D., Rahma, D. Y. 2013. Pengaruh Substitusi Limbah Cair Tahu Untuk Menstimulasi Pembentukan Lipida Pada Chlorella sp. Journal of Marine Research 2(1): 80-86.

Hernandi, R., Dharma, A., Armaini, A. 2019. Penapisan, isolasi, dan karakterisasi mikroalga yang berpotensi sebagai sumber biodiesel dari perairan Danau Kerinci, Jambi. Jurnal Litbang Industri 9(1): 41-49.

Hossain, S. Z., Alnoaimi, A., Razzak, S. A., Ezuber, H., Al‐Bastaki, N., Safdar, M., Hossain, M. M. 2018. Multiobjective optimization of microalgae (Chlorella sp.) growth in a photobioreactor using Box‐Behnken design approach. The Canadian Journal of Chemical Engineering 96(9): 1903-1910.

Jati, B. N., Yunilawati, R., Nuraeni, C., Oktarina, E., Aviandharie, S. A., Rahmi, D. 2019. Ekstraksi dan Identifikasi Fitosterol pada Mikroalga Nannochloropsis occulata. Jurnal Kimia dan Kemasan 41(1): 31-36.

Kawaroe, M., Prartono, T., Saefurahman, G. 2015. Kepadatan dan laju pertumbuhan spesifik Nannochloropsis sp. pada kultivasi heterotropik menggunakan media hidrolisat singkong. Omni-Akuatika 11(2).

Kumar, K. S., Dahms, H. U., Won, E. J., Lee, J. S., Shin, K. H. 2015. Microalgae–A promising tool for heavy metal remediation. Ecotoxicology and environmental safety 113: 329-352.

Matamoros, V., Gutiérrez, R., Ferrer, I., García, J., Bayona, J. M. 2015. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. Journal of hazardous materials, 288: 34-42.

Mirón, A. S., Garcıa, M. C. C., Gómez, A. C., Camacho, F. G., Grima, E. M., Chisti, Y. 2003. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal 16(3): 287-297.

Mohsenpour, S. F., Willoughby, N. 2013. Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresource technology 142: 147-153.

Mohsenpour, S. F., Richards, B., Willoughby, N. 2012. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource technology 125: 75-81.

Moody, J. W., McGinty, C. M., Quinn, J. C. 2014. Global evaluation of biofuel potential from microalgae. Proceedings of the National Academy of Sciences 111(23): 8691-8696.

Mujtaba, G., Rizwan, M., Lee, K. 2017. Removal of nutrients and COD from wastewater using symbiotic co-culture of bacterium Pseudomonas putida and immobilized microalga Chlorella vulgaris. Journal of Industrial and Engineering Chemistry 49: 145-151.

Prandini, J. M., Da Silva, M. L. B., Mezzari, M. P., Pirolli, M., Michelon, W., Soares, H. M. 2016. Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresource technology 202: 67-75.

Pratiwi, D. M., Budiman, A., Supraba, I., Suyono, E. A. 2019. Comparison of the Effectiveness of Microalgae Harvesting with Filtration and Flocculation Methods in WWTP ITDC Bali. International Journal of Environmental and Science Education 14(1): 1-12.

Priatni, S., Budiwati, T. A., Ratnaningrum, D., Kosasih, W., Andryani, R., Susanti, H., Susilaningsih, D. 2016. Antidiabetic screening of some Indonesian marine cyanobacteria collection. Biodiversitas Journal of Biological Diversity 17(2): 642-646.

Prihantini, N. B., Wardhana, W., Widyawan, A., Rianto, R. 2006. Cyanobacteria dari beberapa situ dan sungai di kawasan Jakarta dan Depok, Indonesia. In Prosiding Seminar Nasional Limnologi (pp. 210-221).

Prinanda, A. D., Istirokhatun, T., Praharyawan, S. 2017. Pemanfaatan Air Lindi Tpa Jatibarang Sebagai Media Alternatif Kultivasi Mikroalga Untuk Perolehan Lipid. Jurnal Teknik Lingkungan 6(1): 1-15.

Saadudin, E., Fitri, S. R., Wargadalam, V. J. 2016. Karakteristik asam lemak mikroalga untuk produksi biodiesel. Ketenagalistrikan dan Energi Terbarukan 10(2): 131-140.

Saputro, T. B., Purwani, K. I., Ermavitalini, D., Saifullah, A. F. 2019. Isolation of high lipids content microalgae from Wonorejo rivers, Surabaya, Indonesia and its identification using rbcL marker gene. Biodiversitas Journal of Biological Diversity, 20(5): 1380-1388.

Senjaya, F. A., Sulistyanto, D., Laira, I., Fatana, M. N., Pridiana, D. B., Widayat, W. 2017. Pengaruh laju alir nitrogen pada metode starvasi nitrogen terhadap peningkatan kandungan lipid mikroalga Chlorella sp. sebagai bahan baku biodiesel. Bioma: Jurnal Ilmiah Biologi 6(2): 21-28.

Shahid, A., Malik, S., Alam, M. A., Nahid, N., Mehmood, M. A. 2019. The Culture Technology for Freshwater and Marine Microalgae. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment (pp. 21-44). Springer, Singapore.

Sidabutar, T., Bengen, D. G., Wouthuyzen, S., Partono, T. 2016. The abundance of phytoplankton and its relationship to the N/P ratio in Jakarta Bay, Indonesia. Biodiversitas Journal of Biological Diversity 17(2): 673-678 .

Simamora, L. A., Sudarno, S., Istirokhatun, T. 2017. Kultivasi Mikroalga Sebagai Metode Pengolahan Dalam Menyisihkan Kadar Cod Dan Amonium Pada Limbah Cair Tahu. Jurnal Teknik Lingkungan 6(1): 1-14.

Subramanian, G., Yadav, G., Sen, R. 2016. Rationally leveraging mixotrophic growth of microalgae in different photobioreactor configurations for reducing the carbon footprint of an algal biorefinery: a techno-economic perspective. RSC Advances, 6(77): 72897-72904.

Sulastri, S., Henny, C., Nomosatryo, S. (2019, March). Phytoplankton diversity and trophic status of Lake Maninjau, West Sumatra, Indonesia. In Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia (Vol. 5, No. 2, pp. 242-250).

Sumantri, I., Hadiyanto, H., Sumarno, S. 2018. Produksi Biomasa Mikroalga Dengan Nitrifikasi Limbah Beramoniak Tinggi. Jurnal Ilmiah Momentum, 10(2).

Suryawan, I. W. K., & Sofiyah, E. S. (2020). Cultivation of Chlorella Sp. and Algae Mix for NH3-N and PO4-P Domestic Wastewater Removal. Civil and Environmental Science Journal, 3(1).

Suryawan, I. W. K., & Prajati, G. (2019, October). Evaluation of Waste Stabilization Pond (WSP) Performance in Bali Tourism Area. In 2019 2nd International Conference on Applied Engineering (ICAE) (pp. 1-5). IEEE.

Susilowati, R., Amini, S. (2018, March). Kultivasi mikroalga Botryococcus braunii sebagai sumber bahan energi alternatif dengan sistem indoor dan outdoor. In Prosiding Forum Inovasi Teknologi Akuakultur (pp. 615-620).

Usha, M. T., Chandra, T. S., Sarada, R., Chauhan, V. S. 2016. Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Bioresource technology 214: 856-860.

Van Harmelen, T., Oonk, H. 2006. Microalgae biofixation processes: applications and potential contributions to greenhouse gas mitigation options. TNO Built Environment and Geosciences Apeldoorn The Netherlands 56.

Vigani, M., Parisi, C., Rodríguez-Cerezo, E., Barbosa, M. J., Sijtsma, L., Ploeg, M., Enzing, C. 2015. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends in Food Science Technology 42(1): 81-92.

Wang, B., Li, Y., Wu, N., Lan, C. Q. 2008. CO2 bio-mitigation using microalgae. Applied microbiology and biotechnology 79(5): 707-718.

Widayat, W., Hadiyanto, H. 201x. Pemanfaatan Limbah Cair Industri Tahu Untuk Produksi Biomassa Mikroalga Nannochloropsis sp Sebagai Bahan Baku Biodiesel. Reaktor 15(4): 253-260.

Yen, H. W., Ho, S. H., Chen, C. Y., Chang, J. S. 2015. CO2, NOx and SOx removal from flue gas via microalgae cultivation: A critical review. Biotechnology journal 10(6): 829-839.

Yim, S. K., Ki, D. W., Doo, H. S., Kim, H., Kwon, T. H. 2016. Internally illuminated photobioreactor using a novel type of light-emitting diode (LED) bar for cultivation of Arthrospira platensis. Biotechnology and bioprocess engineering 21(6): 767-776.


Refbacks

  • There are currently no refbacks.