EKSPRESI Hsa-miR-22-3p PADA URIN PASIEN BENIGN PROSTATE HYPERPLASIA (BPH) SEBAGAI BIOMARKER NON INVASIF

Angga Dwi Prasetyo
| Abstract views: 73 | PDF views: 75

Abstract

Benign Prostate Hyperplasia (BPH) is one of prostate diseases with highest prevalence rates men in the world. Benign Prostate Hyperplasia are caused by many factors, such as disorders of androgen receptors, mutations genes, age, epigenetics and environment. Detection BPH in the form of Prostate Specific Antigen (PSA), Transurethral Resection Of Prostate (TURP) and Digital Rectal Examination (DRE) which is invasive in the patient. MicroRNAs in urine eksosomes can be used to detect BPH with non-invasive to patients. This study aims to determine the potential expression of Hsa-miR-22-3p in eksosomal urine samples of BPH as a non-invasive biomarker. This was an observational cross sectional analytic study. Urine samples were obtained from dr. Sardjito Yogyakarta and dr. Soeradji Tirtonegoro hospital. Furthermore, eksosomes isolation, RNA isolation, cDNA synthesis and quantification with qRT-PCR. Based on the results, it is known that Hsa-miR-22-3p decreased expression as much as 29.54 times in BPH, there were significant differences between samples of BPH and normal samples (P = 0.001). Thus Hsa-miR-22-3p has potential as a biomarker in Benign Prostate Hyperplasia.

 

Keywords

BPH, PSA, TURP, MicroRNA, qRT-PCR, Hsa-miR-22-3p

Full Text:

PDF

References

Ajit, S.K., 2012. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors, 12(3), pp. 3359–3369.

Bunting, P.S., 2002. Screening for prostate cancer with prostate-specific antigen: Beware the biases. Clinica Chimica Acta, 315(1–2), pp. 71–97.

Burchard, J., Jackson, A.L., Malkov, V., Needham, R.H.V., Tan, Y., Bartz, S.R., Dai, H., Sachs, A.B. and Linsley, P.S., 2009.

MicroRNA-like off-target transcript regulation by siRNAs is species specific. Rna, 15(2), pp. 308–315.

Cankar, K., Stebih, D., Dreo, T., Žel, J. and Gruden, K., 2006. Critical points of DNA quantification by real-time PCR - Effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC Biotechnology, 6, pp. 1–15.

Cochetti, G., Rossi de Vermandois, J.A., Maulà, V., Giulietti, M., Cecati, M., Del Zingaro, M., Cagnani, R., Suvieri, C., Paladini, A. and Mearini, E., 2020. Role of miRNAs in prostate cancer: Do we really know everything? Urologic Oncology: Seminars and Original Investigations, 38(7), pp. 623–635.

Dahlan, M.S., 2010. Besar Sampel dan Cara Pengambilan Sampel dalam Penelitian Kedokteran dan Kesehatan, Edisi 3. Salemba Medika: Jakarta.

Derveaux, S., Vandesompele, J. and Hellemans, J., 2010. How to do successful gene expression analysis using real-time PCR. Methods, 50(4), pp. 227–230.

Detassis, S., Grasso, M., Del Vescovo, V. and Denti, M.A., 2017. microRNAs make the call in cancer personalized medicine. Frontiers in Cell and Developmental Biology, 5(SEP), pp. 1–20.

Egidi, M.G., Cochetti, G., Guelfi, G., Zampini, D., Diverio, S., Poli, G. and Mearini, E., 2015. Stability assessment of candidate reference genes in urine sediment of prostate cancer patients for miRNA applications. Disease Markers, 2015.

Foster, H.E., Barry, M.J., Dahm, P., Gandhi, M.C., Kaplan, S.A., Kohler, T.S., Lerner, L.B., Lightner, D.J., Parsons, J.K., Roehrborn, C.G., Welliver, C., Wilt, T.J. and McVary, K. T., 2018. Surgical Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA Guideline. Journal of Urology, 200(3), pp. 612–619.

Globocan-IARC. 2012. International Agency for Research on Cancer

Heijnsdijk, E.A., de Carvalho, T.M., Auvinen, A., Zappa, M., Nelen, V., Kwiatkowski, M., et al. 2015. Cost-effectiveness of prostate cancer screening: A simulation study based on ERSPC data. Journal of the National Cancer Institute, 107(1), pp. 366.

Hessels, D. and Schalken, J.A., 2013. Urinary biomarkers for prostate cancer: A review. Asian Journal of Andrology, 15(3), pp. 333–339.

His, M., Zelek, L., Deschasaux, M., Pouchieu, C., Kesse-Guyot, E., Hercberg, S., Galan, P., Latino-Martel, P., Blacher, J. and Touvier, M., 2014. Prospective associations between serum biomarkers of lipid metabolism and overall, breast and prostate cancer risk. European Journal of Epidemiology, 29(2), pp. 119–132.

Ilic, D., Neuberger, M. M., Djulbegovic, M. and Dahm, P., 2013. Screening for prostate cancer. Cochrane Database of Systematic Reviews (Online).

Kemenkes RI. 2015. Situasi Penyakit kanker. semester 1

Kumar, B. and Lupold, S., 2016. MicroRNA expression and function in prostate cancer: A review of current knowledge and opportunities for discovery. Asian Journal of Andrology, 18(4), pp. 559–567.

Livak, K.J. and Schimttgen, 2001. Analysis of relative gene expression data using real-time quantitative pcr and the 22ddct method. Methods, 25, pp. 402–408.

Mirtarbase. 2017. Kode dan Sekuen miR-22-3p pada manusia

Pasqualini, L., Bu, H., Puhr, M., Narisu, N., Rainer, J., Schlick, B., Schäfer, G., Angelova, M., Trajanoski, Z., Börno, S. T., Schweiger, M. R., Fuchsberger, C. and Klocker, H., 2015. miR-22 and miR-29a are members of the androgen receptor cistrome modulating LAMC1 and Mcl-1 in prostate cancer. Molecular Endocrinology, 29(7), pp. 1037–1054.

Pérez-Rambla, C., Puchades-Carrasco, L., García-Flores, M., Rubio-Briones, J., López-Guerrero, J. A. and Pineda-Lucena, A., 2017. Non-invasive urinary metabolomic profiling discriminates prostate cancer from benign prostatic hyperplasia. Metabolomics, 13(5), pp. 1–12.

Rakheja, D., Chen, K.S., Liu, Y., Shukla, A.A, Chang, T., Khokhar, S., Wickiser, J.E., Nitin, J., Malter, J.S., Mendell, J.T. and Amatruda, J.F., 2015. biogenesis through distinct mechanisms in Wilms tumors. 1, pp. 1–22.

Schalken, J.A., 2014. Clinical use of novel urine and blood based prostate cancer biomarkers: a review. Clinical Biochemistry, 47(10–11), pp. 889–896.

Suburu, J. and Chen, Y.Q., 2012. Lipids and prostate cancer. Prostaglandins and Other Lipid Mediators, 98(1–2), pp. 1–10.

Szczyrba, J., Löprich, E., Wach, S., Jung, V., Unteregger, G., Barth, S., Grobholz, R., Wieland, W., Stöhr, R., Hartmann, A., Wullich, B. and Grässer, F., 2010. The microRNA profile of prostate carcinoma obtained by deep sequencing. Molecular Cancer Research, 8(4), pp. 529–538.

Wang, J., Li, Y., Ding, M., Zhang, H., Xu, X. and Tang, J., 2017. Molecular mechanisms and clinical applications of MIR-22 in regulating malignant progression in human cancer (Review). International Journal of Oncology, 50(2), pp. 345–355.

Wu, D., Ni, J., Beretov, J., Cozzi, P., Willcox, M., Wasinger, V., Walsh, B., Graham, P. and Li, Y., 2017. Urinary biomarkers in prostate cancer detection and monitoring progression. Critical Reviews in Oncology/Hematology, 118(August), pp. 15–26.

Xin, M., Qiao, Z., Li, J., Liu, J., Song, S., Zhao, X., Miao, P., Tang, T., Wang, L., Liu, W., Yang, X., Dai, K. and Huang, G., 2016. MiR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: Evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer. Oncotarget, 7(28), pp. 44252–44265.

Zaidi, N., Swinnen, J.V. and Smans, K. 2012. ATP-citrate lyase: A key player in cancer metabolism. Cancer Research, 72(15), pp. 3709–3714.

Zhang, G.M., Bao, C.Y., Wan, F.N., Cao, D.L., Qin, X.J., Zhang, H.L., Zhu, Y., Dai, B., Shi, G.H. and Ye, D.W., 2015. MicroRNA-302a suppresses tumor cell proliferation by inhibiting AKT in prostate cancer. PLoS ONE, 10(4), pp. 1–12.


Refbacks

  • There are currently no refbacks.