ANALISIS KERAGAMAN GENETIK AKSESI KEDELAI INTRODUKSI DARI WILAYAH SUBTROPIS BERBASIS MORFOLOGI DAN MOLEKULER

Rerenstradika Tizar Terryana, Nickita Dewi Safina, Suryani Suryani, Kristianto Nugroho, Puji Lestari
| Abstract views: 118 | PDF views: 67

Abstract

Genetic diversity information on soybean germplasm will establish the success of soybean breeding program. In the present study, four qualitative morphological traits information collected from Germplasm Resources Information Network (GRIN), United States Department of Agriculture (USDA) database (www.ars-grin.gov) and 10 microsatellite markers were used to analyze the relationship among 45 accessions of subtropical introduced soybean. The morphological characters of introduced soybean accessions contributed to support the result of molecular characterization. The introduced soybean accessions used in this study were diverse based on morphological and molecular characters. Based on principle component analysis, the flower color, pod color, and growth habit contributed most of the total genetic diversity. All introduced accessions were overlap into four quadrants based on principal coordinate analysis. All microsatellite primers showed polymorphism on total accession observed. High allele variation (9–27 alleles) was observed among tested accessions, with an average allele number and Polymorphic Information Content (PIC) value of 20.7 and 0.95 (0.92–0.97), respectively. All microsatellite markers showed PIC value >0.7 indicating that these markers were suitable for soybean diversity studies with high differentiation and with the average value of genetic diversity of 0.95. The phylogenetic analysis revealed that 45 soybean accessions could be divided into two major groups. Soybean accessions belonging to the same area did not always occupy the same group. The results confirmed that both morphology and molecular genetic diversity in a combined way could efficiently evaluate the variation present in different soybean accessions in any breeding program.

Keywords

Soybean; Morphology; Microsatellite; Genetic Diversity

Full Text:

PDF

References

Asadi, 2014. Pendayagunaan kedelai introduksi dalam perbaikan varietas. Warta Biogen, 10(1), pp. 8–10.

Bisen, A., Khare, D., Nair, P. and Tripathi, N., 2014. SSR

analysis of 38 genotypes of soybean (Glycine Max (L.) Merr.) genetic diversity in India. Physiology and Molecular Biology of Plants, 21(1), pp. 109–115. https://doi.org/10.1007/s12298-014-0269-8.

Botstein, D., White, R. L., Skolnick, M. and Davis, R. W., 1980. Construction of a genetic lingkage map in man using restriction fragment length polymorfism. American Journal of Human Genetics, 32, pp. 314–331.

Chaerani, C., Hidayatun, N. and Utami, D. W., 2011. Keragaman genetik 50 aksesi plasma nutfah kedelai berdasarkan sepuluh penanda mikrosatelit. Jurnal AgroBiogen, 7(2), pp. 96–105. https://doi.org/10.21082/jbio.v7n2.2011.p96-105.

Charlesworth, D. and Willis, J. H., 2009. The genetics of inbreeding depression. Nature Reviews Genetics, 10(11), pp. 783–796. https://doi.org/10.1038/nrg2664.

Chauhan, D. K., Bhat, J. A., Thakur, A. K., Kumari, S., Hussain, Z. and Satyawathi, C. T., 2015. Molecular characterization and genetic diversity assessment in soybean (Glycine max (L.) Merr.) varieties using SSR markers. Indian Journal of Biotechnology, 14, pp. 504–510.

Chung, J., Moon, J. and Cho, Y., 2006. Discrimination of Korean soybean cultivars by SSR markers. Korean Journal of Crop Science, 51(7), pp. 658–668.

Corte, A. D., Moda-Cirino, V., Arias, C., de Toledo, J. and Destro, D., 2010. Genetic analysis of seed morphological traits and its correlations with grain yield in common bean. Brazilian Archives of Biology and Technology, 53(2), pp. 27–34.

Cregan, P., Jarvik, T., Bush, A., Shoemaker, R., Lark, K., Kahler, A. and Specht, J., 1999. An integrated genetic linkage map of the soybean. Crop Science, 39, pp. 1464–1490.

Dawei, X., Chen, J., Sun, J., Wang, H., Jiang, G., Hu, C. and Liu, Q., 2012. Identification and characterization of SSRs from soybean (Glycine max) ESTs. Molecular Biology Reports, 39(9), pp. 9047–9057. https://doi.org/10.1007/s11033-012-1776-8.

El-Hashash, E., 2016. Genetic diversity of soybean yield based on cluster and principal component analyses. Journal of Advances in Biology & Biotechnology, 10(3), 1–9. https://doi.org/10.9734/jabb/2016/29127.

Furstenau, T. N. and Cartwright, R. A., 2017. The impact of self-incompatibility systems on the prevention of biparental inbreeding. PeerJ, 5(e4085), pp. 1–21. https://doi.org/10.7717/peerj.4085.

Gupta, A., Mahajan, V., Khati, P. and Srivastava, A., 2010.

Distinctness in Indian soybean (Glycine max) varieties using DUS characters. Indian Journal of Agricultural Sciences, 80(12), pp. 1081–1084.

Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001. PAST : Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), pp. 1–9.

Hermanto, Sadikin, D. and Hikmat, E., 2009. Deskripsi Varietas Unggul Palawija 1918-2009. Bogor: Pusat Penelitian dan Pengembangan Tanaman Pangan.

Hidayatullah, A. F., Zubaidah, S. and Kuswantoro, H., 2017. Karakter morfologi polong galur kedelai hasil persilangan varietas introduksi dari Korea dengan varietas Indonesia. In Prosiding Seminar Pendidikan IPA Pascasarjana UM 2, pp. 381–389.

Hildebrand, C.E., Torney, D.C. and Wagner, R.P., 1992.

Informativeness of polymorphic DNA markers. Los Alamos Science, 30. Retrieved from https://fas.org/sgp/othergov/doe/lanl/pubs/00326695.pdf.

Hwang, T.Y., Gwak, B.S., Sung, J. and Kim, H.S., 2020. Genetic diversity patterns and discrimination of 172 korean soybean (Glycine max (L.) merrill) varieties based on SSR analysis. Agriculture, 10(3). https://doi.org/10.3390/agriculture10030077.

Hymowitz, T., 1970. On the domestication of the soybean. Econ. Bot, 23, pp. 408–421.

Johnston, M.P., 2014. Secondary data analysis: A method of which the time has come. Qualitative and Quantitative Methods in Libraries, 3, pp. 619–626.

Kachare, S., Tiwari, S., Tripathi, N. and Thakur, V.V., 2019. Assessment of genetic diversity of soybean (Glycine max) genotypes using qualitative traits and microsatellite markers. Agricultural Reseach, 9, pp. 23–34.

Kementerian Pertanian Direktorat Jenderal Tanaman Pangan. 2016. Data produksi padi, jagung, kedelai 2015 naik dibandingkan tahun 2014. Retrieved February 8, 2020, from http://tanamanpangan.pertanian.go.id/berita/123.

Kristamtini, Taryono, Basunanda, P. and Murti, R.H., 2014. Keragaman genetik kultivar padi beras hitam lokal berdasarkan penanda mikrosatelit. Jurnal AgroBiogen, 10(2), pp. 69–76. https://doi.org/10.21082/jbio.v10n2. 2014.p69-76.

Kumar, A., Pandey, A., Aochen, C. and Pattanayak, A., 2015. Evaluation of genetic diversity and interrelationships of agro-morphological characters in soybean (Glycine max) genotypes. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85(2), pp. 397–405.

https://doi.org/10.1007/s40011-014-0356-1.

Kumawat, G., Singh, G., Gireesh, C., Shivakumar, M., Arya, M., Agarwal, D.K. and Husain, S.M., 2014. Molecular characterization and genetic diversity analysis of soybean (Glycine max (L.) Merr.) germplasm accessions in India. Physiology and Molecular Biology of Plants, 21(1), pp. 101–107. https://doi.org/10.1007/s12298-014-0266-y.

Kuswandi, Sobir, and Suwarno, W., 2014. Keragaman genetik plasma nutfah rambutan di Indonesia berdasarkan karakter morfologi (genetic variation of rambutan germplasm in Indonesia based on morphological characters ). Jurnal Hortikultura, 24(4), pp. 289–298.

Lestari, P., Nugroho, K., Terryana, R.T., Sustiprijatno, Mastur, Cahyono, A.A. and Saptadi, D., 2019. Assessment of genetic variability in introduced and Indonesian soybean genotypes using morphological and SNAP markers. Journal of Advanced Agricultural Technologies, 6(1), pp. 1–8. https://doi.org/10.18178/joaat.6.1.1-8.

Lestari, P., Risliawati, A., Utami, D.W., Hidayatun, N., Santoso, T.J. and Chaerani, 2016. Pengembangan identitas spesifik berbasis marka SSR pada 29 varietas kedelai lokal Indonesia. Jurnal Biologi Indonesia, 12(2), pp. 219–230.

Liu, K., and Muse, S.V., 2005. PowerMaker: An integrated analysis environment for genetic maker analysis. Bioinformatics, 21(9), pp. 2128–2129. https://doi.org/10.1093/bioinformatics/bti282.

Mahbub, M.M., Rahman, M.M., Hossain, M.S., Nahr, L. and Shirazy, B.J., 2016. Morphophysiological variation in soybean (Glycine max (L.) Merrill). American-Eurasian Journal of Agriculture and Environmental Sciences, 16(2), pp. 234–238. https://doi.org/10.5829/idosi.aejaes. 2016.16.2.12687.

Malek, M.A., Rafii, M.Y., Shahida Sharmin Afroz, M., Nath, U. K. and Mondal, M.M.A., 2014. Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants.

Scientific World Journal. https://doi.org/10.1155/ 2014/968796.

Moeljopawiro, S., 2010. Marka mikrosatelit sebagai alternatif uji BUSS dalam perlindungan varietas tanaman padi. Buletin Plasma Nutfah, 16(1), pp. 1–7.

Mustofa, Z., Budiarsa, I. M. and Samdas, G., 2013. Variasi genetik jagung (Zea mays L.) berdasarkan karakter fenotipik tongkol jagung yang dibudidaya di desa Jono Oge. E-Jipbiol, 1, pp. 33–41.

Nugroho, K., Terryana, R.T., and Lestari, P., 2017. Analisis keragaman genetik kedelai introduksi menggunakan marka mikrosatelit. Informatika Pertanian, 26(2), pp. 121–132.

Ofuape, S.O., Ococha, P.I., and Njoku, D., 2015. Multivariate assessment of the agromorphological variability and yield components among sweetpotato (Ipomoea batatas (L.) Lam) landraces. African Journal of Plant Sciences, 5(2), pp. 123–132. https://doi.org/10.1007/s10722-015-0229-3.

Palmer, R., Pfeiffer, T., Buss, G. and Kilen, T., 2004. Qualitative genetics. In H. Boerma & J. Specht (Eds.), Soybeans: improvement, production, and uses (pp. 137–214). Madison (WI): ASA, CSSA, and SSA.

Ramteke, R. and Murlidharan, P., 2012. Characterization of soybean (Glycine max) varieties as per DUS guidelines. Indian Journal of Agricultural Sciences, 82(7), pp. 572–577.

Reflinur, Lestari, P. and Lee, S.-H., 2016. The potential use of SSR markers to support the morphological identification of indonesian mungbean varieties. Indonesian Journal of Agricultural Science, 17(2), pp. 65–74.

Risliawati, A., Riyanti, E.I., Lestari, P., Utami, D.W. and Silitonga, T.S., 2015. Development of SSR marker set to identify fourty two Indonesian soybean varieties. AgroBiogen, 11(2), pp. 49–58.

Rohaeni, W.R., Susanto, U., Yunani, N., Usyati, N. and Satoto. 2016. Kekerabatan beberapa aksesi padi lokal tahan hama penyakit berdasarkan analisis polimorfisme marka SSR. AgroBiogen, 12(2), pp. 81–90.

Santoso, T.J., Utami, D.W. and Septiningsih, E.M., 2006.

Analisis sidik jari DNA plasma nutfah kedelai menggunakan markah SSR. Jurnal AgroBiogen, 2(1), pp. 1–7. https://doi.org/10.21082/jbio.v2n1.2006.p1-7

Shankar, R., Govindrao, B., Tukaram, B. and More, A. 2009. Diversity analysis of bitter gourd (Momordica charantia L.) germplasm from tribal belts of India., The Asian and Australasian Journal of Plant Science and Biotechnology, 3(1), pp. 21–25.

Suhartina, Hapsari, R.T. and Purwantoro. 2016. Keragaan karakter morfo-agronomis (diversity of soybean germplasm based on morpho-agronomical characters). Buletin Plasma Nutfah, 22(2), pp. 109–118.

Sulistyo, A., Indriani, F.C., Mejaya, M.J., Sugiharto, A.N. and Agranoff, J., 2019. Genetic diversity of Indonesian soybean (Glycine max L. Merrill) germplasm based on morphological and microsatellite markers. In IOP Conference Series: Earth and Environmental Science 293, https://doi.org/10.1088/1755-1315/293/1/012006

Surahman, M., Santosa, E. and Nisya, F.N., 2009. Karakterisasi dan analisis gerombol plasma nutfah jarak pagar indonesia dan beberapa negara lain menggunakan marka morfologi dan molekuler. Jurnal Agronomi Indonesia, 37(November 2008), pp. 256–264.

Susanto, G.W.A.S. and Nugrahaeni, N., 2017. Pengenalan dan karakteristik varietas unggul kedelai. In Bunga Rampai: Teknik Produksi Benih Kedelai (pp. 17–28). IAARD Press. Retrieved from http://balitkabi.litbang.

pertanian.go.id/publikasi/monograf/bunga-rampai-teknik-produksi-benih-kedelai/

Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), pp. 2725–2729.

Tantasawat, P., Trongchuen, J., Prajongjai, T., Jenweerawat, S. and Chaowiset, W., 2011. SSR analysis of soybean (Glycine max (L.) Merr.) genetic relationship and variety identification in Thailand. Australian Journal of Crop Science, 5(3), pp. 283–290.

Tasma, I. M., 2017. Pendekatan bioteknologi dan genomika untuk perbaikan genetik tanaman jarak pagar sebagai penghasil bahan bakar nabati. Jurnal AgroBiogen, 13(2), pp. 123–136.

Terryana, R.T., Nugroho, K., Reflinur, R., Mulya, K., Dewi, N. and Lestari, P., 2017. Keragaman genotipik dan fenotipik 48 aksesi kedelai introduksi asal Cina. Jurnal AgroBiogen, 13(1), pp. 1–16. https://doi.org/10.21082/jbio.v13n1.2017.p1-16.

Thomson, M.J., Septiningsih, E.M., Suwardjo, F., Santoso, T. J., Silitonga, T.S. and McCouch, S.R., 2007. Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers. Theoretical and Applied

Genetics, 114, pp. 559–568. https://doi.org/10.1007/s00122-006-0457-1.

Tilahun, S., Paramaguru, P. and Bapu, J.R.K., 2013. Genetic diversity in certain genotypes of chilli and paprika as revealed by RAPD and SSR analysis. Asian Journal of Agricultural Sciences, 5(2), pp. 25–31.

Utami, D.W., Hidayatun, N., Risliawati, A. and Hanarida, I., 2011. Keragaman genetik 96 aksesi plasma nutfah padi berdasarkan 30 marka SSR terpaut gen pengatur waktu pembungaan (HD genes). AgroBiogen, 7(2), pp. 76–84. https://doi.org/10.21082/jbio.v7n2.2011.p76-84.

Vianna, V.F., Unêda-trevisoli, S.H., Desidério, J.A., Santiago, S. De, Charnai, K., Júnior, J.A.F. and Mauro, A.O., 2013. The multivariate approach and influence of characters in selecting superior soybean genotypes. African Journal of Agricultural Research, 8(30), pp. 4162–4169. https://doi.org/10.5897/AJAR2013.7064.

Wang, L., Fuang, R., Li, Y., Lin, F., Luan, W., Li, W. and Qiu, L., 2008. Genetic diversity of Chinese spring soybean germplasm revealed by SSR markers. Plant Breeding, 127(1), pp. 56–61. https://doi.org/10.1111/j.1439-0523.2007.01429.x.

Wang, S., Liu, Y., Liying, M., Liu, H., Tang, Y., Wu, L. and Pang, X., 2014. Isolation and characterization of microsatellite markers and analysis of genetic diversity in Chinese jujube (Ziziphus jujuba Mill.). PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099842.

Wang, S., Zhang, S., He, J., Lu, G. and Yang, Z. 2013. The principal component analysis and cluster analysis of Coix resource characteristics. Journal of Yunnan Agricultural University, 28, pp. 157–162.

Wardiana, E., Towaha, J. and Syafaruddin. 2017. Pengelompokan 33 aksesi kakao berdasarkan karakter morfologi komponen buah. Jurnal Tanaman Industri Dan Penyegar, 4(2), pp. 67–78.

Yan, W., Maoying, Y., Wenyu, Y., Weiguo, L. and Taiwen, Y., 2011. Multivariate analysis on isoflavone content for soybean land races in Sichuan Basin. Journal of Animal & Plant Sciences, 11(2), pp. 1380–1393. Retrieved from http://m.elewa.org/JAPS/2011/11.2/1.pdf

Yang, K., Jeong, N., Moon, J.-K., Lee, Y.-H., Lee, S.-H., Kim, H. M. and Jeong, S.-C., 2010. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. Journal of Heredity, 101(6), pp. 757–768. https://doi.org/10.1093/jhered/esq078.

Yono, D., Wahyu, Y., Sobir, and Toruan-Mathius, N., 2017. Identifikasi penanda SSR yang berasosiasi dengan bobot tandan buah kelapa sawit (Elaeis guineensis Jacq.). Jurnal Agronomi Indonesia, 45(1), pp. 79–85.

Yu, S., Xu, W., Vijayakumar, C., Ali, J., Fu, B., Xu, J. and Li, Z., 2003. Molecular diversity and multilocus organization of the parental lines used in the International Rice Molecular Breeding Program. Theoretical and Applied Genetics, 108(1), pp. 131–140.

Yuzbaiodlu, E., Ozcan, S. and Acik, L., 2006. Analysis of genetic relationships among turkish cultivars and breeding lines of Lens culinatis mestile using RAPD markers. Genetic Resources and Crop Evolution, 53, pp. 507–514.


Refbacks

  • There are currently no refbacks.