EFEK SELENIUM OKSIKLORIDA TERHADAP AKTIVITAS IMUNOMODULATOR DARI EKSOPOLISAKARIDA Lactobacillus plantarum

Fifi Afiati, D. C. Agustina, S. Wiryowidagdo, Kusmiati Kusmiati, Atit Kanti
| Abstract views: 67 | PDF views: 94

Abstract

Lactobacillus plantarum (LAB) is a group of lactic acid bacteria that can produce exopolysaccharide (EPS). The objective of this study was to determine the effect of adding selenium chloride oxide (SeOCl2) to the increased immunomodulatory potential of EPS L. plantarum Y-1.2. The experiment was conducted in vivo using macrophage cells of peritoneal fluid of mice induced by Staphylococcus aureus. EPS was obtained by precipitation at 4 °C. Identification test using HPLC showed that crude EPS of L. plantarum Y-1.2 containing glucose monomers for value retention times 4.198 and 4.204, crude EPS approaches the retention time of glucose BP 4.234. Testing of immuno-modulatory divided into six treatment groups. Group 1-3 as the control group, a positive control (Stimuno), negative control (crude EPS 50 mg/kg BW in mice), normal control (distilled water). Group 4-6 as the test group was given crude EPS 50 mg/kg BW in mice and selenium oxide chloride doses of 0.13 µg; 0.26 µg; 0.52 µg. The test results showed a dosage of 0.52 µg selenium chloride oxide to crude EPS of 50 mg/kg BW in mice could increase the activity and phagocytic capacity amounted to 28.06% and 28.39%

Keywords

Lactobacillus plantarum, macrophage cells, phagocytic, selenium chloride oxide

Full Text:

PDF

References

Abbas, A., Lichtman, A.H. and Pober J.S., 2005. Cellular and Molecular Immunology. 5th ed. Philadelphia: Elsevier-Saunder,4-15,22-3,65-80,81-103,182- 7,247-53,258-9,266,268-9,279-80,290-5.

Aslam, R., Marban, C., Corazzol, C., Jehl, F., Delalande, F., Van Dorsselaer, A., et al., 2013. Cateslytin, a chromogranin A derived peptide is active against Staphylococcus aureus and resistant to degradation by its proteases. PLoS One. 8:e68993.

Baratawidjaja, K.G., 2004. Imunologi Dasar. Edisi 7. Jakarta: Balai Penerbit Fakultas Kedokteran Universitas Indonesia. p. 6-20, 71-83,412-28.

Bravo, A.R., Valera, M.J., Moreno, E. and Guerra, V., 2011. Biological response modifier activity of an exopolysaccharide from Paenibacillus jamilae CP-7. Clinical and Diagnostic Laboratory Imunology, 8(4), pp. 706–710.

DuBois, M., et al., Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 1956. 28(3), pp. 350–356. In: Bukola Adebayo-Tayo, Racheal Fashogbon. 2020. In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. Bulgaricus. Heliyon 6 e03268. Elsevier Ltd.

Egbuna, C., Kumar, S., Ifemeje, J.C., Kurhekar, J.V.,

Phytochemistry: Volume 2: Pharmacognosy,

Nanomedicine, and ContemporaryIssues. https://umm.edu/health/medical/altmed/supplement/selenium. [accessed 11 Mei 2020]

Erickson, K.L., Medina, E.A. and Hubbard, N.E., 2000. Micronutrients and innate immunity. Journal Infectious Diseases 182, pp. S5–S10. PMID: 10944478

Fardiaz, S., 1992. Mikrobiologi pangan I. Jakarta: PT Gramedia Pustaka Utama. pp. 29–41.

Hanne, K., Mæhre, Lars Dalheim, Guro, K., Edvinsen, Edel, O., Elvevoll, and Ida-Johanne, Jensen., 2018. Protein Determination-Method Matters. Journal of Foods, 7(5), pp.1–11 doi:10.3390/foods7010005

Harutoshi, T., 2013. Exopolysaccharides of lactic acid bacteria for food and colon health applications. Intech. http://dx.doi.org/10.5772/50839 [accessed 11 Mei 2020]

Herawati, I., Husin, U.A., Sudigdoadi, S., 2015. Pengaruh Ekstrak Etanol Propolis Terhadap Aktivitas dan Kapasitas Fagositosis pada Kultur Makrofag yang Diinfeksi Enteropathogenic Escherichia coli (EPEC). MKB, 47(2). http://dx.doi.org/10.15395/mkb. v47n2. 460

Hibbs, J.B., Taintor, R.R. and Vavrin, Z., 1987. Macrophage cytotoxicity: Role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science, 235, pp. 473–476. doi:10.1126/science.2432665 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]

Jun, Zhou, Kaixun, Huang, Xin, Gen Lei., 2013. Selenium and diabetes-Evidence from animal studies. Joural Free Radical Biology and Medicine, 65. July 2013 DOI: 10.1016/j.freeradbiomed.2013.07.012

Schumacher-Kiremidjian, and Roy, M., 1998. Selenium and immune function. Z Ernahrungswiss, 37(1), pp. 50–56. PMID: 9558729

Kresno, S.B., 2001. Imunologi Diagnosis dan Prosedur Laboratorium. Edisi IV. Jakarta: Balai Penerbit Fakultas Kedokteran Universitas Indonesia. pp. 4–34, 172–73.

Kubica, M., Guzik, K., Koziel, J., Zarebski, M., Richter, W., Gajkowska, B., et al., 2008. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One 3: e1409.

Kusmiati, Tamat, S.R., Nuswantara, dan Isnaini, N., 2007. Produksi dan penetapan kadar β-glukan dari tiga galur Saccharomyces cerevisiae dalam media mengandung molase. Jurnal Ilmu Kefarmasian Indonesia, (5), pp. 7–16.

Lowenstein, C.J., Dinerman, J.L. and Snyder, S.H., 1994. Nitric oxide: A physiologic messenger. Annals of Internal Medicine, 120, pp. 227–237. doi:10.7326/0003-4819-120-3-199402010-00009

Nair, S.P., Williams, R.J. and Henderson, B., 2000. Advances in our understanding of the bone and joint pathology caused by Staphylococcus aureus infection. Rheumatology (Oxford) 39, pp. 821–834.

Pan, D., Jia Liu, Xiaoqun, Zeng Lu, Liu Hua, Li. and Yuxing Guo., 2015. Immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. Lactis. Food and Agricultural Immunology, 26 (2), pp. 248–259, http://dx.doi. org /10.1080/095401 05.2014.89400

Safir, N., Wendel, A., Saile, R. and Chabraoui, L., 2003. The effect of selenium on immune functions of J774.1 cells. Selenium and Staphylococcus aureus Eradication by Macrophage PLOS. Clinical Chemistry Laboratory Medicine, 41, pp. 1005–1011. PMID: 12964805

Savadogo, A.C.A.T., Ouattara1, Savadogo, P.W., Barro, N., Ouattara, A.S. and Traoré, A.S., 2004. Identification of exopolysaccharides-producing lactic acid bacteria from Burkina Faso fermented milk samples. African Journal of Biotechnology, 3, pp.189–194.

Savadogo, A., Ouattara, C.A., Bassole, I.H.N. and Traore, S.A., 2006. Bacteriocins and lactic acid bacteria a mini review. African Journal Biotechnology, 5(9), pp. 678–683.

Schumacher, K. and Roy, M., 1987. Selenium and immune function. US National Library of Medicine National Institute of Health. 42(2), pp. 277–303.

Song, J. Y., Han, S. K., Son, E. H., Pyo, S. K., Yun, Y. S. and Yi, S. Y. 2002. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. International Immunopharmacology, 2, pp. 857–865. doi:10.1016/S1567-5769(01)00211-9[Crossref], [PubMed], [Web of Science ®], [Google Scholar]

Tang Y., W. Dong, K. Wan, L. Zhang, Chun Li, Lili Zhang, and Ning Liu. 2015. Exopolysaccharide Produced by Lactobacillus Plantarum Induces Maturation of Dendritic Cells in BALB/c Mice. PLOS ONE DOI:10.1371/journal.pone.0143743 November 24, 2015

Thomson, C.D., 2004. Assessment of requirements for selenium and adequacy of selenium status: a review. Dunedin: Departement of Human Nutrition University of Otago. p.4

Thurlow, L.R., Hanke, M.L., Fritz, T., Angle, A., Aldrich, A., Williams, S.H, et al., 2011. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. Journal of Immunology, 186, pp. 6585–6596. doi: 10.4049/jimmunol.1002794 PMID: 21525381

Thwaites, G.E. and Gant, V., 2011. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus. Nature Reviews Microbiology, pp. 215–222.

Wahyudi, P. dan Priyanto., 2010. Uji aktivitas imunomodulator polisakarida jamur tiram putih (Pleurotus ostreatus) dan jamur shitake (Lentinus edodes) berdasar aktivitas dan kapasitas fagositosis sel makrofag peritoneum mencit secara in vivo. Farmasi Sains, 1(1), pp. 7–13.

Wang, Ji, Zhao, X., Yang, Y., Zhao, A. and Yang, Z., 2015. Characterization and bioactivities of an exopo-lysaccharide produced by Lactobacillus plantarum. International Journal of Biological Macromolecules, 74, 119–126.


Refbacks

  • There are currently no refbacks.