THE IMPORTANCE OF RUMEN ANAEROBIC FUNGI ON FIBER DEGRADATION IN RUMINANTS: REVIEW

Sinta Agustina, I Komang Gede Wiryawan, Sri Suharti
| Abstract views: 1268 | PDF views: 731

Abstract

Forage is a feed source for ruminant livestock, but one of the limiting factors of forage is high content of fiber in old forage plants. The fiber content in forage can only be degraded by rumen microbes. One of the rumen microbes that has fiber degrading activity is rumen anaerobic fungi because it can produce very active enzymes to degrade lignocellulose. The rumen anaerobic fungi are divided into several genera which are grouped base on the number of flagella in zoospores, thallus morphology and rhizoid type. The presence of fungi in the rumen is very important because fungi can form rhizoid which will penetrate the feed particles and degrade plant cell walls physically and chemically. In addition, fungi can produce fiber degrading enzymes such as cellulase, hemicellulase, pectinase, and lignocellulase which can increase feed digestibility. However, in Indonesia there is not much study of the potential for rumen anaerobic fungi, so the aims of this review paper is to discuss the potential of anaerobic fungi rumen in improving fiber digestibility in livestock.

Keywords

anaerobic fungi, fiber degradation,lignocellulase enzyme, taxonomy

Full Text:

PDF

References

Akin, D.E. and Borneman, W.S., 1990. Role of rumen fungi in fiber degradation. Journal of Dairy Science, 73(10), pp.3023‒3032. doi: https://doi.org/10.3168/jds.S0022-0302(90)78989-8.

Akin, D.E., Gordon, G.L.R. and Hogan, J.P., 1983. Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur. Applied and Environmental Microbiology, 46(3), pp. 738‒748.

Aydin, S., Yildirim, E., Ince, O. and Ince, B., 2017. Rumen anaerobic fungi create new opportunities for enhanced methane production from microalgae biomass. Algal Research 23, pp.150‒160. doi: http://dx.doi.org/10.1016/j.algal.2016.12.016.

Bauchop, T., 1979. Rumen anaerobic fungi of sheep and cattle. Applied and Environmental Microbiology, 38(1), pp.148‒158.

Bauchop, T., 1989. Biology of gut anaerobic fungi. Biosystems, 23(1), pp. 53‒64. doi: https://doi.org/10.1016/0303-2647(89)90008-7.

Behera, B.C., Sethi, B.K., Mishra, R.R., Dutta, S.K. and Thatoi, H.N., 2017. Microbial cellulases – diversity & biotechnology with reference to mangrove environment: a review. Journal of Genetic Engineering and Biotechnology, 15(1), pp. 197‒210. doi: https://doi.org/10.1016/j.jgeb.2016.12.001.

Bonerman, W.S., Ljungdahl, L.G., Hartley, R.D. and Akin, D.E., 1992. Purification and partial characterization of two feruloyl esteraases from the anaerobic fungus Neocallimastix strain MC-2. Applied and Environmental Microbiology, 58(11), pp. 3762‒3766.

Callaghan, T.M., Podmirseg, S.M., Hohlweck, D., Edwards, J.E., Puniya, A.K., Dagar, S.S., Griffith, G.W., 2015. Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo feaces. MycoKeys (9)1, pp. 11‒28. doi: https://doi.org/10.3897/mycokeys.9.9032.

Cheng, Y., Shi, Q., Sun, R., Liang, D., Li, Y., Li, Y., Jin, W. and Zhu, W., 2018. The biotechnological potential of anaerobic fungi on fiber degradation and methane production. World Journal of Microbiology and Biotechnology, 34(10), pp. 155‒162. doi: https://doi.org/10.1007/s11274-018-2539-z.

Dagar, S.S., Kumar, S., Griffith, G.W., Edwards, J.E., Callaghan, T.M., Singh, R., Nagpal, A.K. and Puniya, A.K., 2015. A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biology, 119(8), pp. 731‒737. doi: https://doi.org/10.1016/j.funbio.2015. 04.005.

Dey, A., Sehgal, J.P., Puniya, A.K. and Singh, K., 2004.

Influence of an anaerobic fungal culture (Orpinomyces sp.) administration on growth rate, ruminal fermentation and nutrient digestion in calves. AJAS 17(6), pp. 820‒824. doi: https://doi.org/10.5713/ajas.2004. 820.

Dollhofer, V., Podmirseg, S.M., Callaghan, T.M., Griffith, G.W. and Fliegerova, K., 2015. Anaerobic fungi and their potential for biogas production. Advances in Biochemical Engineering / Biotechnology, 151, pp. 41‒61. doi: https://doi.org/10.1007/978-3-319-21993-6_2.

Edwards, J.E., Forster, R.J., Callaghan, T.M., Dollhofer, V., Dagar, S.S., Cheng, Y., Chang, J., Kittelman, S., Fliegerova, K., Puniya, A.K., Henske, J.K., Gilmore, S.P., O’Malley, M.A., Griffith, G.W. and Smidt, H., 2017. PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Frontiers in Microbiology, 8(1), pp. 1‒27. doi: https://doi.org/ 10.3389/fmicb.2017.01657.

Edwards, J.E., Hermes G.D.A., Kittelman, S., Nijsse, B. and Smidt H., 2019. Assessment of the accuracy of high-throughput sequencing of the ITS1 region of Neocallimastigomycota for community composition analysis. Frontiers in Microbiology, 10(1), pp. 1‒11. doi: https://dx.doi.org/10.3389%2Ffmicb.2019.02370.

Fuller, A., 1989. A review: Probiotics in man and animals. Journal of Applied Microbiology, 66(5), pp. 365‒378.

Gordon, G.L.R. and Phillips, M.W., 1998. The role of anaerobic gut fungi in ruminants. Nutrition Research Reviews, 11(1), pp.133‒168. doi: https://doi.org/10.1079/NRR199 80009.

Gordon, G.L.R., 1985. The potential for manipulation of rumen fungi. Rural Science, 6, pp. 124‒128.

Gordon, G.L.R., Phillips, M.W., Rintoul, A.J. and White, S.W., 2000. Increased intake of fibrous feed by sheep orally dosed with a culture of an elite non-indigenous anaerobic gut fungus. AJAS 13, pp.143‒143.

Gruninger, R.J., Puniya, A.K., Callaghan, T.M., Edwards, J.E., Youssef, N., Dagar, S.S., Fliegerova, K., Griffith, G.W., Forster, R., Tsang, A., McAllister, T., Elshahed, M.S., 2014. Anaerobic fungi (phylum Neocallimasti-gomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiology Ecology 90(1), pp.1‒17. doi: https://doi.org/10.1111/1574-6941.12383.

Haitjema, C.H., Solomon, K.V., Henske, J.K., Theodorou, M.K. and O’Malley, M.A., 2014. Anaerobic gut fungi: advances in solution, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol. and Bioengineering, 9999, pp. 1471‒1481. doi: https://doi. org/10.1002/bit.25264.

Hanafy, R.A, Lanjekar, V.B., Dhakephalkar, P.K., Callaghan, T.M., Dagar, S.S., Griffith, G.W., Elshahed, M.S. and Youssef, N.H., 2020. Seven new Neocallimasti-gomycota genera from wild, zoo-housed, and domesticated herbivorres greatly expand the taxonomic diversity of the phylumi. Mycologia, 112(2), pp.1‒28. doi: https://doi.org/10.1080/00275514.2019.1696619.

Hanafy, R.A., Elshahed, M.S and Youssef, N.H., 2018. Feramyces austinii, gen. nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer. Mycologia, 110(3), pp. 513‒525. doi: https://doi.org/10.1080/00275514.2018. 1466610.

Hanafy, R.A., Elshahed, M.S., Liggenstoffer, A.S., Griffith, G.W. and Youssef, N.H., 2017. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia, 109(2), pp. 231‒243. doi: https://doi.org/10.1080/ 00275514.2017.1317190.

Hibbett, D.S., et al., 2007. A higher-level phylogenetic

classification of the fungi. Mycological Research, 111(5), pp. 509‒547. doi: https://doi.org/10.1016/j.mycres. 2007.03.004.

Ho, Y.W. and Abdullah, N., 1999. The role of rumen fungi in fibre digestion: Review. AJAS, 12(1), pp.104‒112. doi: https://doi.org/10.5713/ajas.1999.104.

Joblin, K.N. and Naylor, G.E., 2010. Ruminal fungi for increasing forage intakeand animal productivity. In: Odongo, N.E., Garcia, M., Viljoen, G.J., eds. Sustainable improvement of animal production and health. pp. 129‒136. Food and Agriculture Organization of The United Nations. Rome. http://www-naweb.iaea.org/nafa/aph/public/aph-sustainable-improvement.html.

Joshi, A., Lanjekar, B.V., Dhakephalkar, P.K., Callaghan, T.M., Griffith, G.W. and Dagar, S.D., 2018. Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys, 40(1), pp. 89‒110. doi: https://doi.org/10.3897/mycokeys.40.28337.

Kittelmann, S., Naylor, G.E., Koolaard, J.P. and Janssen, P.H., 2012. A proposed taxonomy of anaerobic fungi (Class Neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. Plos One, 7(5), pp.1‒13. doi: https://doi.org/10.1371/journal.pone.0036866.

Krisnan, R., Haryanto, B. and Wiryawan, K.G., 2009. Pengaruh kombinasi penggunaan probiotik mikroba rumen dengan suplemen katalitik dalam pakan terhadap kecernaan dan karakteristik rumen domba. JITV, 14(4), pp. 262‒269.

Lado, L.J.M.C.K. and Aoetpah, A., 2009. Kualitas gizi dan kecernaan bahan organik secara in vitro hay rumput untuk sapi antar pulau di Stasiun Karantina Tenau Kupang. PARTNER, 16(2), pp. 57‒62.

Lee, S.S., Ha, J.K. and Cheng, K.J., 2000. Influence of an

anaerobic fungal culture administration on in vivo ruminal fermenntation and nutrient digestion. Animal Feed Science and Technology, 88(3), pp. 201‒217. doi: https://doi.org/10.1016/S0377-8401(00)00216-9.

Ljungdahl, L.G., 2008. The cellulase/Hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspect of its applied use. Annals of the New York Academy of Sciences, 1125(1), pp. 308‒321. doi: https://doi.org/10.1196/annals.1419.030.

Marrison, J.M., Elshahed, M.S. and Youssef, N., 2016. A multifunctional GH39 glycoside hydrolase from the anaerobic gut fungus Orpinomyces sp. strain C1A. PeerJ, 4, pp.1‒25. doi: http://dx.doi.org/10.7717/peerj.2289.

McSweeney, C.S., Dulieu, A., Katayama, Y. and Lowry, J.B., 1994. Solubilization of lignin by the ruminal anaerobic fungus Neocallimastix patricium. Applied and Environmental Microbiology, 60(8), pp. 2985‒2989.

Nagpal, R., Puniya, A.K., Sehgal, J.P. and Singh, K., 2011. In vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminants herbivores. Mycoscience, 52(1), pp. 31‒38. doi: https://doi.org/ 10.1007/s10267-010-0071-6.

Orpin, C.G., 1975. Studies on the rumen flagellate Neocallimastix frontalis. Journal of General Microbiology, 91(2), pp. 249‒262. doi: https://doi.org/10.10 99/00221287-91-2-249.

Orpin, C.G., 1994. Anaerobic Fungi – Taxonomy, Biology, and Distribution in Nature. Marcel Dekker Inc. New York.

Pamungkas. D. and Anggraeny, Y.N., 2006. Probiotik dalam pakan ternak ruminansia. WARTAZOA, 16(2), pp.82‒91.

Paul, S.S., Bu, D., Xu, J., Hyde, K.D. and Yu, Z., 2018. A

phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework. Fungal Diversity 89(1), pp. 253‒266. doi: https://doi. org/10.1007/s13225-018-0396-6.

Paul, S.S., Deb, S.M., Punia, B.S., Das, K.S., Singh, G., Ashar, M.N. and Kumar. R., 2011. Effect of feeding isolates of anaerobic fungus Neocallimastix sp. CF 17 on growth rate and fibre digestion in buffalo calves. Archives of Animimal Nutrition, 65(3), pp. 215‒228. doi: https://doi.org/10.1080/1745039X.2011.559722.

Paul, S.S., Deb, S.M., Punia, B.S., Singh, D. and Kumar, R., 2010. Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of of buffaloes. Journal of the Science of Food and Agriculture, 90(7), pp. 1218‒1226. doi: https://doi.org/10.1002/jsfa.3952.

Paul, S.S., Kamra, D.N., Sastry, V.R.B., Sahu, N.P. and Agarwal, N., 2004. Effect of anaerobic fungi on in vitro feed digestion by mixed rumen microflora of buffalo. Reproduction Nutrition Development, 44(4), pp. 313‒319. doi: https://doi.org/10.1051/rnd:2004 036.

Puniya, A.K., Salem, A.Z.M., Kumar, S., Dagar, S.S., Griffith, G.W., Puniya, M., Ravella, S.R., Kumar. N., Dhewa. T. and Kumar. R., 2015. Role of live microbial feed supplements with reference to anaerobic fungi in ruminant productivity: A review. Journal of

Integrative Agriculture, 14(3), pp. 550‒560. doi: https://doi.org/10.1016/S2095-3119(14)60837-6.

Rabee, A.E., Forster, R.J., Elekwachi, C.O., Kewan, K.Z., Sabra, E.A., Shawket, S.M., Mahrous, H.A. and Khamiss, O.A., 2018. Community structure and fibrolytic activities of anaerobic rumen fungi in dromedary camels. Journal of Basic Microbiology, 59(1), pp. 101‒110. doi: https://doi.org/10.1002/jobm.201800 323.

Saxena, S., Sehgal, J.P., Puniya, A.K. and Singh, K., 2010. Effect of administration of rumen fungi on production performance of lactating buffaloes. Beneficial Microbes, 1(2), pp. 183‒188. doi: https://doi.org/10.3920/bm2009.0018.

Sehgal, J.P., Jit, D., Puniya, A.K. and Singh, K., 2008. Influence of anaerobic fungal administration on growth, rumen fermentation and nutrient digestion in female buffalo calves. Journal of Animal and Feed Sciences, 17(4), pp. 510‒518. doi: https://doi.org/10.22358/jafs/ 66678/2008.

Sirohi, S.K., Choudhury, P.K., Puniya, A.K., Singh, D., Dagar S.S. and Singh, N., 2013. Ribosomal ITS1 squence-based diversity analysis of anaerobic rumen fungi in cattle fed on high fiber diet. Annals of Microbiology, 63(1), pp. 1571‒1577. doi: https://doi.org/10.1007/s13213-013-0620-2.

Thareja, A., Puniya, A.K., Goel, G., Nagpal, R., Sehgal, J.P., Singh, P.K. and Singh, K., 2006. In vitro degradation of wheat straw by anaerobic fungi from small ruminants. Animal nutrition, 60(5), pp. 412‒417. doi: http://dx.doi.org/10.1080/17450390600884443.

Wang, X., Liu, X. and Groenewald, J.Z., 2017. Phylogeny of

anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Antonie Van Leeuwenhoek, 110(1), pp. 87‒103. doi: https://dx.doi.org/10.1007%2Fs10482-016-0779-1.

Wood, T., Catriona, A., Sheila, I.W., McCrae, and Joblin, K.N., 1985. A highly active extracellular celulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiology Letters, 34(1), pp. 37‒40. doi: https://doi.org/10.1111/j.1574-6968.1986.tb01344.x.


Refbacks

  • There are currently no refbacks.