Fatimah Fatimah, Joko Prasetiyono, Sustiprijatno Sustiprijatno
| Abstract views: 126 | PDF views: 77


In the attempt to maintain and hopefully increase national rice production, it is necessary to prepare agriculture sector in facing the impacts of climate change, land degradation, dry land, flooding, slowing production, and population growth rate. Adaptation efforts play an
important role in ensuring the sustainability of food security. The development of adaptive rice varieties to abiotic stresses specifically drought and submergence stresses are expected to minimize damage, survive stress, continue to grow and produce. Development of Inpari 30 rice varieties tolerant to submergence to drought tolerant to have a broader spectrum of tolerance through marker-assisted backcrossing methods with the gene pyramid approach. The development of new variety using Inpari 30 as the background is one of the applications of pyramiding gene in Indonesia. Combining conventional breeding with molecular markers and phenotypic selection (drought and submergence) is expected to produce rice lines tolerant to drought and submergence with stabil yields and accelerate the homozygosity of the genome in the third generation. This is an alternative solution to dealing with climate change to support the national food security program.




Drought, gene pyramiding, Marker Assisted Backcrossing, Rice, Submergence

Full Text:



Armstrong, W. and Drew, M.C., 2002. Root growth and metabolism under oxygen deficiency. Dalam: Waisel, Y., Eshel, A., Kafkafi, U. eds. Plant roots: the hidden half. pp. 729–761. Marcel Dekker. New York.

Collard, B. C. Y. and Mackill D. J., 2008. Marker-assisted

selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society B, 363(1491), pp.557–572.

BB Padi. 2016. Varietas padi toleran perubahan iklim. http://bbpadi.litbang.pertanian.go.id/index.php/berita/info-teknologi/content/389-varietas-padi-toleran-perubahan-iklim (diunduh 31 Oktober 2018).

Blum, A., 2005. Drought resistance, water-use efficiency, and are they compatible, dissonant, or mutually exclusive. Australian Journal of Agricultural Reseasrch, 56, pp.1159–1168.

Boer, R., Buono, A., Sumaryanto, Surmaini, E., Rakhman, A., Estiningtyas, W., Kartikasari, K. and Fitriyani., 2009. Agriculture Sector. Technical Report on Vulne-rability and Adaptation Assessment to Climate Change for Indonesian’s Second National

Communication. Ministry of Environment and United Nation Development Programme, Jakarta.

Catling, D., 1992. Rice in Deep Water. London: MacMillan Press.

Chimenti, C.A., Marcantonio, M. and Hall, A.J., 2006. Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Research, 95, pp. 305–315.

Delphine, F., Jefferies, S., Kuchel, H. and Langridge, P., 2010. Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 61(12), pp. 3211–3222.

Farooq, M., Wahid, A., Ito, O., Lee, D.J. and Siddique, K.H.M., 2009. Advances in drought resistance of rice. Critical Reviews in Plant Science, 28, pp. 199–217.

Farooq, M., Hussain, M., Wahid, A. and Siddique, K.H.M., 2012. Drought Stress in Plants: An Overview dalam Aroca, R., ed. Plant Responses to Drought Stress. pp 1-33. Springer-Verlag Berlin Heidelberg. DOI: 10.1007/978-3-642-32653-0_1

Fatimah dan Prasetiyono. J., 2020. Pemanfaatan piramida gen ketahanan terhadap penyakit hawar daun bakteri dalam mendukung perakitan varietas unggul padi. Jurnal Litbang Pertanian, 39(1), pp.11–20. DOI: 10.21082/jp3.v39n1.2020.p11

Fatimah, Prasetiyono, J., Trijatmiko, K.R. and Sustiprijatno., 2018. Molecular evaluation for drought tolerant using marker assisted breeding method. Annales Bogorienses, 22(2), pp. 94–100. DOI: http://dx.doi.org/10.14203/ann.bogor.2018.v22.n2.94-100

Figueiredo, M.V.B., Buritya, A.H., Martınez, C.R. and Chanway, C.P., 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Applied Soil Ecology, 40, pp. 182–188.

Flexas, J. and Medrano, H., 2002. Energy dissipation in C3 plants under drought. Functional Plant Biology, 29, pp. 1209–1215.

Frisch, M., Bohn, M. and Melchinger. A.E., 1999. Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Science, 39, pp. 1295−1301.

Fukao, T. and Bailey-Serres, J., 2008. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proceedings of the National Academy of Sciences, 105, pp. 16814–16819.

Fukao, T., Xu, K., Ronald, P.C. and Bailey-Serres, J., 2006. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell, 18, pp. 2021–2034.

Fukao, T., Yeung, E. and Bailey-Serres, J., 2011. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell, 23, pp. 412–427.

Fukao, T. and Bailley-Serres, J., 2007. Ethylene - A key regulator of submergence responses in rice. Plant Science, 175, pp. 43–51.

Fukao, T., Xu, K.N., Ronald, P.C. and Serres, B.J., 2006. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell, 18, pp. 2021–2034.

Hairmansis, A., Supartopo, Kustianto, B., Suwarno, dan Pane. H., 2012. Perakitan dan pengembangan varietas unggul baru padi toleran rendaman air INPARA 4 dan INPARA 5 untuk daerah rawan banjir. Jurnal Litbang Pertanian, 31(1), pp.1–7.

Hatmoko, Radhika, W., Raharja, B., Tollenaar, D. and Vernimmen, R., 2015. Monitoring and prediction of hydrological drought using a drought early warning system in Pemali-Comal river basin, Indonesia. Procedia Environmental Sciences, 24, pp. 56–64.

Hsiao, T.C., O’Toole, J.C., Yambao, E.B. and Turner, N.C., 1984. Influence of osmotic adjustment on leaf rolling and tissue death in rice (Oryza sativa L.). Plant Physiology, 75, pp. 338–341.

Huang, B. and Jiang, Y. 2000. Effect of drought or heat stress alone and in combination on Kentucky Bluegrass, Crop Science, 40, pp. 1358–1362.

Jackson, M.B., and Ram, P.C., 2003. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Annals of Botany, 91, pp. 227–241.

Jiang, G.L., 2015. Molecular Marker-Assisted Breeding: A Plant Breeder’s Review Dalam Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools, Al-Khayri, J.M., et al. (eds.) pp. 431–472. Springer International Publishing Switzerland. DOI 10.1007/978-3-319-22521-0_15

Joshi, R. K. and Nayak, S., 2010. Gene pyramiding: a broad spectrum technique for developing durable stress resistance in crops. Biotechnology and Molecular Biology Review. 5(3), pp. 51–60.

Kementerian Pertanian. 2012. Pengembangan asuransi usaha tani padi untuk antisipasi perubahan klim. Warta Penelitian dan Pengembangan, 34(2), pp. 16–18.

Kementerian Pertanian. 2014. Statistik lahan pertanian tahun 2009-2013. Jakarta, Pusat Data dan Sistem Informasi Pertanian.

Kementerian Pertanian. 2018. Prosedur Operasional Standar Penilaian Varietas Dalam Rangka Pelepasan Varietas Tanaman Pangan. pp. 127.

Kiani, S.P., Talia, P., Maury, P., Grieu, P., Heinz, R., Perrault, A., Nishinakamasu, V., Hopp, E., Gentzbittel, L., Paniego, N. and Sarrafi, A., 2007. Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Science, 172, pp. 773–787.

Kumar, A., Bernier, J., Verulkar, S., Lafitte, H.R. and Atlin, G.N., 2008. Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Research, 107(3), pp. 221–231.

Kumar, R., Sarawgi, A.K., Ramos, C., Amarante, S.T., Ismail, A.M. and Wade, L.J., 2006. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Research, 98, pp. 1–11.

Lei, Y.B., Yin, C.Y. and Li, C.Y., 2006. Differences in some morphological, physiological and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiology Plant, 127, pp. 182–191.

Levitt, J., 1980. Responses of plants to environmental stresses. Dalam Water, radiation, salt and other stresses, Kozlowski, T.T., ed. pp.93–186. Academic, New York.

Liu, H., Wang, X., Wang, D., Zou, Z. and Liang, Z., 2011. Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Industrial Crops and Products, 33, pp. 84–88.

Lubba, K.M., Fatimah, Prasetiyono, J. and Saptadi. D., 2020. Agronomic characterization and background selection of BC3F1 Inpari-30 × Cabacu rice lines using ssr markers for drought and submergence tolerance. SABRAO Journal of Breeding and

Genetics, 52(1), pp. 17–29.

Malav, A.K., Indu, and Chandrawat. K.S., 2016. Gene pyramiding: an overview. International Journal of Current. Research on Bioscience and Plant Biology, 3(7), pp. 22–28.

McCouch, S.R., Teytelman, L., Xu, Y., Lobos, K. B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z., Xing, Y., Zhang, Q., Kono, I., Yano, M., Fjellstrom, R., DeClerck, G., Schneider, D., Cartinhour, S., Ware, D. and Stein, L., 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 9, pp. 199—207.

Meyre, D., Leonardi, A., Brisson, G. and Vartanian, N., 2001. Drought-adaptive mechanisms involved in the escape/tolerance strategies of Arabidopsis Landsberg erecta and Columbia ecotypes and their F1 reciprocal progeny. Journal of Plant Physiology, 158, pp. 1145–1152.

Dalezios, N.R., Gobin, A., Tarquis, A.M. and Eslamian, S., 2017. Agricultural Drought Indices: Combining Crop, Climate and Soil Factors Dalam Handbook of Drought and Water Scarcity. Eslamian, S. and Eslamian, F.A., eds, pp. 689. CRC Press Taylor and Francis Group.

Ribaut, J.M., de Vicente, M.C. and Delannay, X., 2010. Molecular breeding in developing countries: challenges and perspectives. Current Opinion in Plant Biology, 13, pp.1–6.

Ribaut, J.M. and Hoisington, D., 1998. Marker-assisted selection: new tools and strategies. Trends in Plant Science, 3,pp. 236–239. doi:10.1016/S1360-1385(98)01240-0

Ruengphayak, S., Chaichumpoo, E., Phromphan, S., Kamolsukyunyong, W., Sukhaket, W., Phuvanartnarubal, E., Korinsak, S. and Vanavichit, A., 2015. Pseudo-backcrossing design for rapidly pyramiding multiple traits into a preferential rice variety. Rice,8(7), pp.1–16.

Silitonga, T.S. dan Risliawati, A., 2011. Pembentukan core collection untuk sumber daya genetik padi toleran kekeringan. Buletin Plasma Nutfah, 17(2), pp. 104–115.

Sandhu, N., Dixit, S., Swamy, B.P.M., Raman, A., Kumar, S., Singh, S.P., Yadaw, R.B., Singh, O.N., Reddy, J.N., Anandan, A., Yadav, S., Venkataeshwarllu, C., Henry, A., Verulkar, S., Mandal, N.P., Ram, T., Badri, J., Vikram, P. and Kumar. A., 2019. Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice, 12(8), pp. 1–16. https://doi.org/10.1186/s12284-019-0269-y.

Scandalios, J.G., 2005. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, pp.995–1014.

Septiningsih, E.M, Hidayatun, N., Sanchez, D.L., Nugraha, Y., Carandang, J., Pamplona, A.M., Collard, B.C.Y., Ismail, A.M. and Mackill. D.J., 2014. Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang- Sub1 and PSB Rc18-Sub1. Euphytica, 202, pp. 259–268.

Setter, T.L. and Laureles, E.V., 1996. The beneficial effect of reduced elongation growth on submergence tolerance of rice. Journal of Experimental Botany, 47, pp. 1551–1559.

Setter, T.L., Ellis, M., Laureles, E.V., Ella, E.S., Senadhira, D., Mishra, S.B., Sarkarung, S. and Datta, S., 1997. Physiology and genetics of submergence tolerance in rice. Annals of Botany, 79, pp. 67−77.

Simova-Stoilova, L., Demirevska, K., Petrova, T., Tsenov, N. and Feller, U., 2008. Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environtment, 54, pp. 529–536.

Sinclair, T.R. and Muchow, R.C., 2001. System analysis of plant traits to increase grain yield on limited water supplies. Agronomy Journal, 93, pp. 263–270.

Singh, S., Pradhan, S., Singh, A. and Singh, O., 2012. Marker validation in recombinant inbred lines and random varieties of rice for drought tolerance. Australian Journal of Crop Science, 6, pp. 606–612.

Subashri, M., Robin, S., Vinod, S. and Rajeswari, S., 2009. Trait identification and qtl validation for productive stage drought resistance in rice using selective genotyping of near flowering RILs. Euphytica, 166(2), pp. 291–305.

Wang, H., Inukai, Y. and Yamauchi, A., 2006. Root development and nutrient uptake. Criticals Reviews in Plant Science, 25, pp. 279–301.

Wilhite, D.A. and Glantz, M.H., 1985. Understanding the drought phenomenon: the role of definitions. Water International, 10, pp. 111–120.

Xu, K. and Mackill, D.J., 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Molecular Breeding, 2, pp. 219–224.

Xu, K., Xu, X., Fukao, T., Canlas, P., Maghirang-Rodriguez, R., Heuer, S., Ismail, A.M., Serres, B.J., Ronald, P.C. and Mackill. D.J. 2006. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 442, pp. 705−708.

Ye, G. and Smith, K. F., 2008. Marker assisted gene pyramiding for inbred line development: basic principles and practical guidelines. International Journal of Plant Breeding, pp.1–10.


  • There are currently no refbacks.