DIVERSITY OF XYLOSE ASSIMILATING YEAST FROM THE ISLAND OF ENGGANO, SUMATERA, INDONESIA [Keragaman Khamir Pengguna Xilose yang Diisolasi dari Pulau Enggano, Sumatera, Indonesia]

Atit Kanti, I Nyoman Sumerta
| Abstract views: 222 | PDF views: 228


Naturally occurring yeasts (wild type) are important genetic resources for many industrial interests. Though biodiversity exploration of Enggano has been done since 1944, but there is no report for yeast diversity from this island. Due to its industrial interest, xylose fermenting yeast is target for many scientists. This present study aims to isolate xylose assimilating yeast from island of Enggano. The samples were collected from varying sources included soil, leaf litter, decay wood, fruit and sediment. Xylose enrichment culture technique was performed to enrich xylose fermenting yeast. While for the isolation of yeast several methods which include dilution, ballistopore falling, direct isolation, membrane filtration were done. Of 200 isolates, 76 strains (38 %) were xylose assimilating yeast which mostly belong to Candida which include C. insectorum, C. tropicalis, C. boidinii, C. pseudolambica, C. yuanshanica, C. silvae, Cyberlindnera saturnus, Williopsis saturnus and Sporobolomyces poonsookiae. One strain Candida sp. that was isolated from soil could be assigned as a candidate of novel species on base on its morphological and biochemical characteristics along with analyses of gene sequence from D1/D2 domain. This study confirms that yeast survey is very important to obtain new genetic resources for industrial interest as well as for taxonomic study.


Enggano, xylose assimilating yeast, Candida.

Full Text:



Altschul SF, W Gish, W Miller, EW Myers and DJ Lipman. 1990. Basic Local Alignment Search Tool. Journal of Molecular Biology 215(3), 403–410. doi:10.1016/S0022-2836(05)80360-2.

Bedu-addo FK. 2004. Understanding Lyophilization Formulation Development. Phamaceutical Technology (20), 10–18.

Bogus?awska-Was E and W Dabrowski. 2001. The Seasonal Variability of Yeasts and Yeast-like Organisms in Water and Bottom Sediment of the Szczecin Lagoon. International Journal of Hygiene and Environmental Health 203, 451–58. doi:10.1078/1438-4639-00056.

Butinar L, S Santos, I Spencer-Martins and N Gunde-Cimerman. 2005. Yeast Diversity in Hypersaline Habitats.” FEMS Microbiology Letters 244(2), 229–34. doi:10.1016/j.femsle.2005.01.043.

Cadete, M Raquel, AM Monaliza, JD Kelly, CL Rita, S Silvio,JE Zilli, JS Marcos, CO Fátima, Marc-André Lachance and AR Carlos. 2012. Diversity and Physiological Characterization of D-Xylose-Fermenting Yeasts 7 (8), e43135. doi:10.1371/journal.pone. 0043135.

de Souza CJA, DA Costa, MQR Rodrigues, A F dos Santos, M R Lopes, A B Abrantes, P dos Santos Costa, WB Silveira, FM Passos and LG Fietto. 2012. The Influence of Presaccharification, Fermentation Temperature and Yeast Strain on Ethanol Production from Sugarcane Bagasse. Bioresource Technology 109, 63–69. doi:10.1016/j.biortech.2012.01.024.

Docters van Leeuwen, WM. 1940. Some Galls from the Island of Enggano. Blumea - Biodiversity, Evolution and Biogeography of Plants 3(3), 405–410.

Ejiofor AO, Y Chisti and M Moo-Young. 1996. Culture of Saccharomyces Cerevisiae on Hydrolyzed Waste Cassava Starch for Production of Baking-Quality Yeast. Enzyme and Microbial Technology 18(7), 519–525. doi:10.1016/0141-0229(95)00166-2.

Gascuel O and M Steel. 2006. Neighbor-Joining Revealed. Molecular Biology and Evolution 23(11), 1997–2000. doi:10.1093/molbev/msl072.

Grismer L, A Riyanto, DT Iskandar and JA McGuire. 2014. “A New Species of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) from Pulau Enggano, Southwestern Sumatra, Indonesia.” Zootaxa 3821(4), 485–495.

Ishchuk OP, YAVoronovsky, OV Stasyk, GZ Gayda, MVGonchar, CA Abbas and AA. Sibirny. 2008. Overexpression of Pyruvate Decarboxylase, In: the Yeast Hansenula Polymorpha Results in Increased Ethanol Yield in High-Temperature Fermentation of Xylose. In? FEMS Yeast Research, 8,1164–1174. doi:10.1111/j.1567-1364.2008.00429.x.

Jakl S. 2008. New Cetoniine Beetle from Enggano and Simeuleu Islands West of Sumatra (Coleoptera: Scarabaeidae: Cetoniinae). Studies and Reports of District Museum Prague-East Taxonomical Series 4(1-2), 103–10.

Kim SR, YC Park, Yong-Su Jin and Jin-Ho Seo. 2013. Strain Engineering of Saccharomyces Cerevisiae for Enhanced Xylose Metabolism. Biotechnology Advances 31(6), 851–861. doi:10.1016/j.biotechadv.2013.03. 004.

Kimura M. 1980. A Simple Method for Estimating Evolutionary Rate of Base Substitutions through Comparative Studies of Nucleotide Sequences. Journal of Molecular Evolution 16, 111–20. doi:10.1007/bf01731581.

King AD, AD Hocking and JI Pitt. 1979. “Dichloran-Rose Bengal Medium for Enumeration and Isolation of Molds from Foods.” Applied and Environmental Microbiology 37(5), 959–64.

Kurtzman CP, and CJ Robnett. 1998. Identification and Phylogeny of Ascomycetous Yeasts from Analysis of Nuclear Large Subunit (26S) Ribosomal DNA Partial Sequences. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 73(4), 331–71. doi:10.1023/A:1001761008817.

KuyperM, HR Harhangi, AK Stave, A Winkler, M Jetten, W De Laat, JJ Den Ridder, HJ M Op Den Camp, JP. Van Dijken and JT Pronk. 2003. High-Level Functional Expression of a Fungal Xylose Isomerase: The Key to Efficient Ethanolic Fermentation of Xylose by Saccharomyces Cerevisiae? FEMS Yeast Research 4(1), 69–78. doi:10.1016/S1567-1356(03)00141-7.

KuyperM, MJ Toirkens, J Diderich, A Winkler, JP Dijken and JT Pronk. 2005. “Evolutionary Engineering of Mixed-Sugar Utilization by a Xylose-Fermenting Saccharomyces Cerevisiae Strain.” FEMS Yeast Research 5 (10), 925–934. doi:10.1016/j.femsyr.2005.04. 004.

Larkin MA, G Blackshields, NP Brown, R Chenna, PA McGettigan, H McWilliam, F Valentin. 2007. “ClustalW and ClustalX Version 2.” Bioinformatics 23 (21), 2947–2948. doi:doi:10.1093/bioinformatics/btm404.

Morais CG, RM Cadete, A Paula, T Uetanabaro, LH Rosa, Marc-andré Lachance and CA Rosa. 2013. D-Xylose-Fermenting and Xylanase-Producing Yeast Species from Rotting Wood of Two Atlantic Rainforest Habitats in Brazil. Fungal Genetics and Biology 60, 19-28. doi:10.1016/j.fgb.2013.07.003.

Pan L, D Yang, L Shao, Wei Li and G Chen. 2009. Isolation of the Oleaginous Yeasts from the Soil and Studies of Their Lipid-Producing Capacities. Food Technol Biotechnol 47(2), 215–520.

Pringle A, SN Patek, M Fischer, J Stolze, and PMNicholas. 2005. The Captured Launch of a Ballistospore. Mycologia 97(4), 866–871. doi:10.3852/mycologia.97.4. 866.

Rastetter EB. 2011. Modeling Coupled Biogeochemical Cycles. Frontiers in Ecology and the Environment 9(1), 68–73. doi:10.1890/090223.

Rodrussamee N, N Lertwattanasakul, K Hirata, Suprayogi, S Limtong, T Kosaka and M Yamada. 2011. Growth and Ethanol Fermentation Ability on Hexose and Pentose Sugars and Glucose Effect under Various Conditions in Thermotolerant Yeast Kluyveromyces marxianus. Applied Microbiology and Biotechnology 90 (4), 1573–1586. doi:10.1007/s00253-011-3218-2.

Ryabova OB, M Oksana and A Sibirny. 2003. Xylose and Cellobiose Fermentation to Ethanol by the Thermotolerant Methylotrophic Yeast Hansenula Polymorpha 4, 157–164. doi:10.1016/S1567-1356(03)00146-6.

SampaioA, R Cortes, and Cecília Leão. 2004. Yeast and Macroinvertebrate Communities Associated with Leaf Litter Decomposition in a Second Order Stream. International Review of Hydrobiology 89(5-6), 456–466. doi:10.1002/iroh.200410764.

Siepel A, G Bejerano, JS Pedersen, AS Hinrichs, M Hou, K Rosenbloom, H Clawson. 2005. “Evolutionarily Conserved Elements in Vertebrate, Insect, Worm, and Yeast Genomes.” Genome Research 15(8), 1034–50. doi:10.1101/gr.3715005.

Sláviková E, B Kosíková, and M Mikulásová. 2002. “Biotransformation of Waste Lignin Products by the Soil-Inhabiting Yeast Trichosporon pullulans.” Canadian Journal of Microbiology 48(3), 200–203. doi:10.1139/W02-013.

Stringini M, F Comitini, M Taccari, and M Ciani. 2008. “Yeast Diversity in Crop-Growing Environments in Cameroon.” International Journal of Food Microbiology 127(1-2), 184–89. doi:10.1016/j.ijfoodmicro.2008. 07.017.

Trillas M, I Casanova, L Cotxarrera, JOrdovás, C Borrero, and M Avilés. 2006. Composts from Agricultural Waste and the Trichoderma asperellum Strain T-34 Suppress Rhizoctonia solani in Cucumber Seedlings. Biological Control 39(1), 32–38. doi:10.1016/j.biocontrol.2006.05.007.

Trodler P, J Nieveler, M Rusnak, RD Schmid and Jürgen Pleiss. 2008. Rational Design of a New One-Step Purification Strategy for Candida antarctica Lipase B by Ion-Exchange Chromatography.” Journal of Chromatography A 1179(2), 161–67. doi:10.1016/j.chroma.2007.11.108.

Urbina H, R Frank, and M Blackwell. 2013. Scheffersomyces cryptocercus: A New Xylose-Fermenting Yeast Associated with the Gut of Wood Roaches and New Combinations in the Sugiyamaella Yeast Clade. Mycologia 105 (3), 650–660. doi:10.3852/12-094.

Vancov T and Brad Keen. 2009. Amplification of Soil Fungal Community DNA Using the ITS86F and ITS4 Primers. FEMS Microbiology Letters 296, 91–96. doi:10.1111/j.1574-6968.2009.01621.x.

Vreulink Jo-Marie, A Esterhuyse, K Jacobs and A Botha. 2007. “Soil Properties That Impact Yeast and Actinomycete Numbers in Sandy Low Nutrient Soils.” Canadian Journal of Microbiology 53(12), 1369–1374. doi:10.1139/W07-092.

Zhang W and A Geng. 2012. Improved Ethanol Production by a Xylose-Fermenting Recombinant Yeast Strain Constructed through a Modified Genome Shuffling Method. Biotechnology for Biofuels 5(1), 46. doi:10.1186/1754-6834-5-46.


  • There are currently no refbacks.