KINERJA Saccharomyces cerevisiae REKOMBINAN [GLO1] DALAM PROSES SIMULTAN HIDROLISIS PATI DAN FERMENTASI UNTUK PRODUKSI BIOETANOL

Afaf Baktir, Nur Cholifah, Sri Sumarsih
| Abstract views: 733 | PDF views: 1686

Abstract

Recent development in fermentations for bioethanol production were focused three factors, i.e. abundance and cheap substrates,superior yeast fermenting the substrates, and simultaneous saccharification and fermentation (SSF) technology.Nowadays national and world bioethanol production still depend on sugar cane and starchy materials.This research aims to determinate the optimum simultaneous saccharification and fermentation (SSF) conditions to identify the performance of local strain Saccharomyces cerevisiae recombinant [GLO1] in the producing bioethanol from starch.The optimum conditions for SSF process are in a media composition containing glucose 2% (w/v), starch 5% and at aeration rate 50 rpm.At these optimum conditions Saccharomyces cerevisiae recombinant [GLO1] produce 25.36% (v/v) bioethanol at day-20 of the fermentation process design.

Keywords

Saccharomyces cerevisiae, rekombinan, strain lokal, simultaneous saccharification and fermentation, bioetanol.

Full Text:

PDF

References

Altintas MM, B Kirdar, Z Onsan and O Ulgen. 2002. Process Biochem. 37, 439-1445. In: V Lyubenova, S Ochoa, J Repke, M Ignatova and 0 Wozny, 2007. Control of one stage bioethanol production by recombinant strain. Biotechnol. & Biotechnol. Eq., 21, 372-376.

Baktir A, E Nina and Purkan. 2009. Transformation and expression of Saccharomycopsis fibuligera glucoamylase gene in Saccharomyces cerevisiae isolated from fermented legen. Proceedings of Second International Conference on Basic and Applied Sciences and Regional Annual Fundamental Science Seminar, Johor Bahru, Malaysia, 2-4 June 2009. Arifah Bahar, Normah Maan, Shajahrahtunnur Jamil, Shaza Eva Muhammad and Sugeng Triwahyono (Eds.).

Baktir A. 1995. Fraksinasi amilase dari Endomycopsis fibuligera dengan metode presipitasi amonium sulfat, Journal of Biological Recearches 1, 77-83.

Crueger W and A Crueger. 2001. A Textbook of Industrial Microbiology, Sinauer Associate, Inc., Sunderland.

Dinh NT, K Nagahisa, T Hirasawa, C Furusawa and H Sbimizu. 2008. Adaptation of Saccharomyces cerevisiae cells to high ethanol concentration and changes in fatty acid composition of membrane and cell size. PLoS ONE 3, e2623.

Kroumov AD, AN Modenes and MC de Araujo Tait. 2006. Bioch. Eng. J., 28, 243-255. In: V Lyubenova, S Ochoa, J Repke, M Ignatova and G Wozny, 2007. Control of one stage bioethanol production by recombinant strain. Biotechnol. & Biotechnol. Eq., 21, 372-376.

Lyubenova V, S Ochoa, J Repke, M Ignatova and G Wozny. 2007. Control of one stage bioethanol production by recombinant strain. Biotechnol. & Biotechnol. Eq., 21, 372-376.

Miller G, LR Blum, WE Glennon and AL Burtton.1960. Dinitrosalisylic acid reagent for determination of reducing sugars. Analytical Chem., 31, 426-428.

Purkan, S Hadi, D Natalia, NNT Puspaningsih dan Rohman A. 2005. Konstruksi ragi rekombinan yang mampu mencerna pati melalui kloning gen penyandi enzim glukoamilase. Laporan Penelitian DP3MDikti, Jakarta.

Rice WE. 1959. Improved spectrophotometric determination of amyiase with a new stable starch substrate solution. Clinical Chemistry 5, 592-596.

Shigechi H, J Koh, Y Fujita, T Matsumoto, Y Bito, M Ueda, E Satoh, H Fukuda and A Kondo. 2004. Direct production of ethanol from raw corn starch via fermentation by use of a novel surfaceengineered yeast strain codisplaying glucoamylase and a-amylase. Appl. Environ. Microbiol. 70, 5037-5040.


Refbacks

  • There are currently no refbacks.