DAUR HIDUP JENIS-JENIS CAPLAK INDONESIA \} ARGAS (PERSICARGAS) ROBERTSI HOOGSTRAAL, KAISER \& KOHLS, 1968
 (ACARINA : ARGASIDAE)

»HASAN BASRI MUNAF
Museum Zoologicum Bogoriense, LBN- LIPI, Bogor

Abstract

H.B. MUNAF. 1986. The life cycle of ticks of Indonesia : Argas (Persigasj robertsi Hoogstraal, Kaiser \& Kohls, 1968 (Acarina: Argasidae), Berita Biologi 3(5): 199-202. In the sequence oflaboratory works in order to fulfil the ladk of biological data of ticks of Indonesia, the life-cycle of a fowl tick, Argas (Persicargasj robertsi, was studied. Nymphs and adults were fed on pigeons using capsule system, whilst larvae were fed on chickens using seeding system. The completion of the lifecycle required minimum 55 days. Other observable data in this study, such as amount of eggs, percentages of ecdysized ticks and survivals were given.

PENDAHULUAN

Penelitian epidemiologi mengenai biologi caplak sungguh bermanfaat, apalagi bila menyangkut jenisjenis yang berperan di dalam peristiwa zoonosis. Di Indonesia, data biologis caplak sangat langka Dalam rangka usaha memperoleh data biologis ini, Musem Zoologicum Bogoriense (MZB) telah melakukan serangkaian penelitian daur hidup jenisjenis caplak Indonesia dengan memeliharanya dalam kondisi tiruan di laboratorium. Salah satu jenis yang diteliti adalah caplak lunak, Argas (Persicargas) robertsi. Caplak ini telah dipelihara selama tiga keturunan.
A. (P.) robertsi merupakan satu di antara 55 jenis caplak yang sampai hari ini tercatat dapat ditemui di Indonesia. Dilaporkan pertama kali djumpai di daerah Queensland-Australia, sekarang penyebarannya telah mencakup India, Sri Langka, Muang Thai, Taiwan dan Indonesia (Hoogstraal et al. 1968, 1974). Di Indonesia, daerah penyebaran caplak ini baru diketahui terbatas pada dua lokasi saja. Lokasi yang pertama adalah Pulau Dua-Jakarta. Di pulau ini, A. (P.) robertsi hidup memarasit burung-burung kuntul (Egretta garzeta nigripes)
dan cangak (Bubulcus ibis). Lokasi yang kedua terletak di daerah Cimanggis-Kelapa Dua, Bogor, tepatnya pada satu peternakan ayam ras (Munaf et al. 1980). Di tempat ini, serangan A. (P.) robertsi telah menimbulkan kerugian berupa penurunan produksi telur, Hoogstraal et al. (1974) melaporkan. bahwa dari A. (P.) robertsi pernah diisolasi tiga macam virus, yaitu Kao Shuan, Pathum Tani dan Nyamanini. Patogenitas ketiga virus ini belum diketahui.

BAFAN DAN CARA KERJA
Penyediaan caplak
Koloni-koloni caplak - larva (L), nimfa (N) dan dewasa 69 yang dipakai dalam penelitian ini berasal keturunan caplak-caplak dewasa A. (P.) robertsi yang dikumpulkan dari sarang-sarang burung cangak.di Pulau Dua (Munaf 1979). Caplak-caplak asal lapangan ini menghasilkan koloni-koloni awal, LL, setelah diberi makan pada burung merpati di laboratorium.

Pemberian makan dan pengamatan

Teknik pemeliharaan caplak oleh Kaiser (1966) dan Loomis (1961) yang telah dimodifikasi di MZB digunakan dalam pemberian makanan caplak selama penelitian (Munaf 1977). Kecuali stadia larva, stadia lainnya dipelihara dengan diberi makan ${ }^{3}$ pada hospes burung merpati memakai sistem kapsul. Khusus untuk larva diberikan hospes anak ayam dengan menggunakan sistem tabur. Selanjutnya anak ayam ini dimasukkanke dalam sangkar pengamatan. Tabung-tabung spesimen di tutup kain kasa untuk tempat penyimpanan semua caplak yang belum ataupun sudah makan darah hospes dan telur. Tabung-tabung ini kemudian diletakkan di dalam desikator yang berkelembaban nisbi 70 80% pada suhu kamar. Kelembaban nisbi ini diper-
oleh dengan bantuan larutan jenus KC1.
Sebanyak seribu lebih larva, 856 nimfa dan 55 caplak dewasa c\$j telah diamati. Pada perlakuan pemberian makanan, caplak-caplak dalam setiap stadia dikelompokkan menurut umur. Kecuali untuk pengamatan masa praparasitik (prefeeding period), umur-umur tersebut berkisar antara 6-47 hari untuk LL, $6-113$ hari untuk NN dan 6 244 hari untuk caplak dewasa. Pengamatan masa praparasitik hanya sempat dilakukan terhadap stadia nimfa dengan pengelorripokkan umur $0,1,2$, 3, 4 dan 5 hari.

Ketahanan hidup tanpa makan (survival)

Uji ketahanan hidup tanpa makan, dilakukan dengan mengamati kemampuan lama hidupnya tanpa diberi makanan. Bagi sekelompok larva sejak muncul dari tetasan telur serta sekelompok nimfä dan caplak dewasa sejak dari pergantian kulit. Caplak dianggap mati Mia anggota tubuhnya tidak bergerak lagi.

HASIL DAN PEMBAHASAN

Perkembangan stadia caplak

Hasil pengamatan pemberian makanan kelompok umur larva dari keturunan F j, F2 dan F3 pada hospes-hospes anak ayam menunjukkan bahwa masa parasitik larva berlangsung antara 4-9 hari. Masa praparasitiknya tidak diperoleh karena hambatan teknik berupa kesukaran mengenakan kapsul pada tubuh anak ayam. Prosentase jumlah larvakenyang (engorged larvae) yang diperoleh adalah $30,8 \%, 62,0 \%$ dan $73,3 \%$. Angka-angka ini dicatat berdasarkan hasil pengamatan pada tiga dari delapan kali percobaan pemberian makanan kelompok larva. Prosentase jumlah larva-kenyang yang terendah berasal dari kelompok umur 33-47 hari, yaitu kedudukan umur yang mendekati atau telah memasuki awal masa ketahanan hidup tanpa makan. Prosentase larva-kenyang pada lima percobaan lainnya tidak didapatkan karena jumlah larva yang diinfestasikan pada tubuh hospes tidak dihitung sebelumnya. Masa praganti-kulit (premolting period) larva menjadi stadia nimfa tercatat 6 14 hari dengan prosentase jumlah ganti kulit hamp ir mencapai 100%.

Empat instar nimfa - Ni, N2, N3 dan N4 diperoleh selama penelitian Masing-masing instar ini membutuhkan maksimum satu hari untuk mengisap darah sampai kenyang'dan pada umumnya
setiap kelompok umur yang diamati menunjukkan prosentase jumlah ganti-kulit 100%. Untuk mendapatkan masa praparasitik nimfa, percobaan pemberian makanan dicobakan terhadap stadia Nj saja. Hasilnya adalah Nj tercatat mulai mampu memarasit hospesnya setelah berumur satu hari. Nj berumur 0 hari kedapatan mati di dalam kapsul. Pengamatan selanjutnya terhadap perkembangan nimfa memberikan keterangan, bahwa perubahan stadia nimfa menjadi stadia dewasa paling cepat terjadi pada pergantian kulit N2: Lama pragantikulit nimfa adalah 8-19 hari dari Nj menjadi $\mathrm{N} 2,10-20$ hari dari N2 menjadi N3, $12-18$ hari dari N2 menjadi dewasa 6 dan $14-15$ hari dari N2 menjadi dewasa 9. Selanjutnya,, masa-masa praganti-kulit N3 menjadi N4 tercatat $14-15$ hari, menjadi dewasa 6 selama 14.-19 hari dan menjadi dewasa 9 berkisar antara $12-23$ hari. Dari N4 yang hanya tersedia empat spesimen, semuanya ternyata menjadi stadia dewasa 9 dengan masa praganti-kulit berlangsung selama $21-31$ hari.

Hasil pengamatan yang menarik pada pergantian kulit nimfa di atas adalah perolehan nisbah stadianya. Pada pergantian kulit N2 tercatat memberikan nisbah N3: $6: 9=15: 9: 1$, sedangkan pada pergantian kulit N3 tercatat N4: $d: 9=1: 4: 14$ dan semua spesimen N4 yang ada berganti kulit menjadi stadia dewasa 9. Gambaran nisbah-nisbah ini, yang menunjukkan jumlah caplak dewasa 9 cenderung lebih banyak dihasilkan daripada jumlah σ pada pergarjtian kulit instar-instar yang lebih tinggi, agaknya merupakan salah satu fenomena biologis A. (P.) robertsi yang perlu untuk diteliti lebih lanjut.

Pada pengamatan perkembangan stadia dewasa, data-data yang tercatat adalah sebagai berikut. Masa parasitik berlangsung tidak lebih dari satu hari, sedangkan masa praparasitiknya belum diamati. Semua caplak dy yang diberi makanan tampak kenyang darah, tetapi yang tercatat bertelur \pm 50% saja dengan masa pratelur (preoviposition period) berkisar antara 5-14 hari. Tidak terjadinya kopulasi di dalam kapsul merupakan kemungkinan utama penyebab kegagalan betina-kenyang tidak meletakkan telur-telurnya. Jumlah telur yang dihasilkan antara 57-205 butir yang dikeluarkan sedikit demi sedikit dalam waktu 3-4 hari. Masa inkubasi telur adalah 9-12 hari dengan day a tetas mencapai hampir 100%. Semua telur yang. diamati ini berasal dari masa perteluran tahap pertama.

Menurut Hoogstraal ei al (1975) dan Supotn \& Srisamorn (1979) yang juga meneliti daur hidup A. (P.) robertsi, tetapi memakai burung-burung merpati sebagai hospes-hospes untuk ketiga stadia caplak, bahwa stadia larva yang telah mengisap darah mempunyai masa-masa parasitik 4-10 hari dan praganti-kulit $4-9(10)$ hari. Membandingkan data tersebut dengan perolehan data perkembangan
, larva berasal dari penelitian yang sekarang dilaporkan memberi petunjuk, bahwa hospes-hospes, baik buiung merpati, maupun anak ayam, membetikan pengaruh yang sama terhadap perkembangan larva. Berdasarkan petunjuk ini, maka lama daur hiduj A. (P.) robertsi pada penelitian yang sekarang dilaporkan dapat diperkitakan minimum 55 hari (Tabel 1). Perkiiaan ini diperhitungkan dengaii

Tabel 1. Lama perkembangan stadia Argas (Persicargas) robertsi hasil pemeliharaan dalam kondisi tiruan (Stada larva diberi hospes anak ayam, stadia nlmfa dan dewasa diberi hospes burung merpati).

Perkembangan			Kisaran waktu
Stadia	Masa		(hari)
Larva	Praparasitik		3*
	Parasitik		4-9
	Praganti-kulit		6-14
Nimfa 1	Praparasitik		1
	Parasitik		1
	Praganti-kulit		8-19
Nimfa 2	Praparasitik		1*
	Parasitik		1
	Praganti kulit menjadi	N_{3}	10-20
		δ	12-18
			14-15
Nimfa 3	Praparasitik		?
	Parasitik		1
	Praganti-kulit menjad	N_{4}	14-15
		\%	14-19
		¢	12-23
Nimfa 4	Praparasitik		?
	Parasitik		1
	Praganti-kulit menjadi		?
		${ }^{\circ}$,
		9	21-31
Dewasa 9	Prapatasitik		1^{*}
	Parasitik		1
	Pratelur		5-14
	Inkubasi telur		9-22

[^0]mengambil batas terendah masa-masa paiasitik larva dan caplak dewasa yang dikemukakan oleh Hoogstraal et al. (1975). Lama daur hidup ini tercatat lebih singkat 3 hari daiipada yang dilapoikan oleh Suporn \& Srisamotn (1979) dan 5 hari daripada yang dipeioleh Hoogstral et al. (1975).

Ketahanan hidup tanpa makan

Teramati, bahwa lama masa ketahanan hidup tanpa makan stadia caplak adalah $32-58$ hari untuk LL, $40-200$ hari untuk NNj , 135-425 hari untuk NNT, 283-659 hari untuk NN3, 430 - 626 hari 66 dan 659 - 1.020 hari untuk 99 Masa ketahanan hidup tanpa makan stadia NN4 tidak diperoleh kaiena belum diamati.

Gambaian data ketahanan hidup tanpa makan d atas ditambah dengan prosentase ganti-kulit LL dan NN yang tinggi seita daya tetas telui yang mencapai hampir 100% mengisyaratkan betapa besarnya potensi^1. (P.) robertsi selaku ektoparasit pengisap darah unggas. Hal potensi ini perlu ditunjang dengan penelitian kemampuan berkembangbiak caplak dewasa yang berumur tua, yang pada penelitian daui hidup sekarang ini belum sempat dikerjakan.

Namun, terlepas dari kemampuan berkembangbiak caplak dewasa A. (P.) rober tsi berumur tua, kehadirannya patut diperhaiikan. Agaknya, sekali syia caplak lunak ini berhasil menginfestasi suatu habitat tempat unggas-unggas bersarang atau berkumpul, maka tempat-tempat ini dapat dipastikan berkemungkinan besar akan menjadi suatu fokus baru bagi hidup dan kegiatan memarasit kolonikoloni caplak A. (P.) robertsi.

UCAPAN TERMMA KASIH

Ucapan terima kasih penulis tujukan kepada Dr. S. Kadarsan yang telah mendorong dan memberikan saran-saran di dalam hal penulisan naskah ini. Pun kepada para teknisi di laboratorium Acarology yang telah ikut mem bantu kelancaran kerja pada penehtian ini, penulis menyampaikan terima kasihnya.

baftar pustaka

HOOGSTRAAE, H., GUIRGIS, S.S., KHALLL, GM. \& KAISER, MM. 1975. The subgenus Persicargas (Ixodoidea: Argasidae: Argas). 27. The life cycle of A. (P.) robertsi. Population samples from Taiwan, Thailand, Indonesia, Australia, and Sri Langka. Southeast Asian J. Trop. Med Publ Mlth. 6(4) : 532'- 539.
HOOGSTRAAL, H, KAISER, M.N. \& MCLURE, H.E. 1974. The subgenus Persicargas (Lxodoidea: Argasidae: Argas). 20. A. (P.) robertsi parasitizing nesting wading birds and domestic chickens in the Australian and Oriental regions, viral infections, and host migration./ Med. Entomol, 11(5) : 513-524.
HOOGSTRAAL. H., KAISER, MN. \& KOHLS, GM. 1968. The subgenus Persicargas (Ixodoidea: Argasidae: Argas). 4. A. (P.) robertsi, new species, a parasite of Australian fow, and keys to Australian aigasid species. Ann. Entomol. Soc.Amer. 61(2) : 535-539.
KAISER, MN. 1966. The subgenus Persicargas (Ixodoidea, Argasidae, Argas). 3. The life cycle of A. (P.) arboreus, and a standardised rearing method for argasid ticks. Ann. Entomol. Soc. Amer. 59(3) : 496-502.
LOOMIS, E.S. 1961. Life histories of ticks under laboratory conditions (Acarina! Ixodidae and Argasidae). /. Parasitol.47(1): 91-99.
MUNAF, H.B. 1977. Teknik sederhana memelihara caplak unggas (Acarina: Argasidae). Hemera Zoa 69(2): 86-93.
MUNAF, H.B. 1979. Fauna caplak dihutan mangrove Pulau Dua. Pros. Sem. Ekos. Hutan Mangrove, MAB-LON/LIPI, 27 Febr. - 1 Maret 1978, Jakarta : 126-128.
MUNAF, H.B., KADARSAN. S. \& SAIM, A. 1980. The bird tick, Argas robertsi (Acarina: Argasidae) in Indonesia. Southeast Asian J. Trop. Med. Publ. Hith. 11(3) : 421-422.
SUPORN, E.B. \& SRISAMORN, T. 1979. Observation on the subgenus Argas (Ixodoidea: Argaiidae, Argas). The life cycle of Argas (Persicargas) robertsi. Proc, BIOTROP Symp. Ectopar. Biol, Bogor, 21 - 23 June 1976. BIOTROP Spe-. Publ. No. 6: 107-117.

Tabel 1. Perubahan sifat fisik buah pisang ambon pada berbagai umui panen.

Sifat Fisik buah.	Umur Panen (calam hari)				
	67	74	81	88	95
Wama kulit buah	hijau	hijau	hijau	hijau	hijau
Rata-rata berat buah (gr)	105,54	109,77	119,02	139,02	199.16
Nisbah daging/kulit buah (gr/gr)	1,24	1,37	1,41	1,66	1,87
Kelunakan buah ($\mathrm{xlO}^{\prime \prime 5} \mathrm{~mm} / \mathrm{g} . \mathrm{t} / \mathrm{detik}$)	3,11	6,41	4,36	3,90	4,73-

Tabel 2. Perubahan sifat kimia buah pisang ambon pada berbagai umur panen.

Kelunakan buah pisang ambon mentah yang dipanen pada umur 67 sampai 95 hari yaitu antara $(3,11-6,41) \cdot 10^{5} \mathrm{~mm} / \mathrm{gr} /$ detik. Terdapat kecendrungan bahwa kelunakan buah bervariasi selama proses penuaan. Kadar air daging dan kulit buah meningkat selama proses penuaan. Hal ini diakibatkan oleh perombakan karbohidrat dan proses respirasi sehingga air yang dibentuk sebagai hasil respirasi disimpan dalam sel (Jacob. The chemicalof food and food product : 724-732, 1951). Kisaran kadar air daging buah dari umur panen 67 sampai 95 hari yaitu antara $70,92-75,06 \%$, sedangkan kadar air kulit buah yaitu antara 88,03 90,0\%.

Tabel 2 memperlihatkan bahwa kadar karbo-
hidrat pisang ambon mentah cukup tinggi yaitu berkisar antara $26,92-36,18 \%$. Selama proses penuaan kadar karbohidrat meningkat dan mencapai maksimal pada umur panen 88 hari kemudian menurun.

Menurunriya kadar karbohidrat pada umur panen 95 hari diakibatkan oleh hidrolisis pati menjadi gula pereduksi seperti yang dijelaskan oleh Hobson (Dalam Friend \& Rhodes. Recent Advances in Biochemestry of fruit and vegetable : 123-132, 1981). Kadar gula pereduksi pisang ambon mentah rendah (Maryayah, et al BerBiol 3(4): 192-193, 1986), dan kadar gula pereduksi terus meningkat sampai buah mencapai masak sempuma.

Jumlah karoten kulit buah pisang ambon men-
tah dari umui panen 67 sampai 95 hari yaitu antara $8,72-2,40$ I.U. Terdapat kecendrungan bahwa jumlah karoten menurun selama proses penuaan buah. Berclasarkan perubahan sifat fisik dan kimia buah ternyata bahwa pisang ambon mencapai matang fisiologis pada umur 88 hari dan umur panen yang paling tepat yaitu antaia 81 haii sampai 88 hari. (ROBINSON HARAHAP, P.S. CTTROREKSOKO \& MARY AY AH. Pusat Penelitian Botani, L.B.N. - L.I.P.I, Bogorj.

MORFOLOGI SEMAI CASSIA SURATTENSIS DAN C. RETUSA SERTA MASALAH TAKSUNOMINYA

Di antara jenis-jenis Cassia yang popular sebagai tanaman hias, Cassia surattensis Burmann f dan C . return Vogel masih belumjelas masalah taksonominya. Konsep jenis Cassia surattensis yang diformulasikan Backer \& Bakhuizen van den Brink Jr. (dalam Fl. Java 1 : 158. 1963) mencakup pula Cassia retusa. Sedang De Wit (dalam Webbia 11 : 197-292. 1955) membedakan C. surattensis dan C. retusa menjadi dua jenis yang berbeda berdasarkan perbedaan-perbedaan bulu, bentuk anak daun, fetap atau tidaknya daun penumpu dan braktea. Tetapi mereka menyarankan agar diteliti kembali karena terdapat ketidakjelasan bentuk anak-anak daunnya.

Morfologi semai seringkali memberikan sifatsifat yang mempunyai nilai taksonomi, namun masih kurang mendapatkan perhatian sebagaimana seharusiya. Pada penelitian semai Canavalia dan Mucuna, ternyata sifat-sifat morfoiogi semai dapat dipergunakan untuk membedakan jenis-jenis dalam kedua marga ini (Sastraprada et al. dalam Ann. Bog:6:57-68. 1975 danAnn.Bog. 6:97-110. 1976)'. Oleh karena itu untuk menjelaskan masalah taksonomi antara C. surattensis dan C. retusa dilakukan penelitian sifat-sifat morfologi semainya.

Biji-biji C. surattensis didapatkan dari Ambor.
sedang biji-biji C. retusa dari Sukabumi. Untuk masing-masing takson diambil 20 butir biji dan dikecambahkan dalam cawan Petri dengan menggunakan kertas saring yang selalu dibasahi dengan air suling. Setelah berkecambah dipindahkan dalam medium pasir halus yang telah direbus. Selanjutnya diamati pertumbuhan dan morfologi semainya.

Kectua takson mempunyai kotiledon yang epi-. geal, tetapi morfologi daun kotiledonnya berbeda. Daun kotiledon C. surattensis yang berukuran $1,5-2,1 \times 1-1,4 \mathrm{~cm}$ lebih besar dibanding dengan daun kotiledon C. retusa yang berukuran $1,1-1,3 \times 0,8-0,9 \mathrm{~cm}$. Disamping itu pertulangan daun kotiledon pada C. surattensis menjari lima sedangkan C. retusa menjari tiga.

Kecepatan rata-rata pertumbuhan semai C. surattensis lebih besar, dengan tinggi semai rata-rata pada umur 1, 2 dan 4 minggu berturut-turut adalah $54,2 \mathrm{~mm}, 96,2 \mathrm{~mm}$ dan $164,5 \mathrm{~mm}$. Secangkan tinggi semai rata-rata C. retusa pada umur yang sama berturut-turut adalah $42,6 \mathrm{~mm}, 68,5$ mm dan $74,6 \mathrm{~mm}$.

Jumlah daun majemuk yang muncul pada C surattensis juga lebih besar karena semai berumur 4 minggu berkisar antara 6-7, secangkan pada C. retusa hanya $4-5$. Di lain pihak jumlah pasangan anak daun yang muncul pada setiap daun majemuk pada C. surattensis lebih kecil karena jumlah pasangan anak-daun pada daun majemuk pertama, kedua dan ketiga berturut-turut adalah satu pasang, sedangkan pada C. retusa adalah dua sampai tiga pasang.Anak daun C. surattensis berbentuk bundar telur stungsang dengan ujung dan pangkal runcing, sedangkan C. retusa anak daunnya berbentuk elip dengan ujung dan pangkal tumpul.

Sifat-sifat morfologi semai pada kedua takson tersebut ternyata sangat berbeda. Adanya perbedaan sifat-sifat morfologi semai ini dapat dipergunakan sebagai dasar untuk menguatkan pendapat De Wit bahwa kedua takson tersebut merupakan dua jenis yang berbeda. - TAHAN UUI, Herbarium Bogoriense, LBN-LIPI, Bogor.

[^0]: * = dikutip dari Hoogstral et al. (1975).
 ? = tidak diperoleh/tidak diamati.

