REINWARDTIA

A JOURNAL ON TAXONOMIC BOTANY,
PLANT SOCIOLOGY AND ECOLOGY


ChieF EDDitor
Kartini Kramadibrata (Herbarium Bogoriense, Indonesia)

Edditors
Dedy Darnaedi (Herbarium Bogoriense, Indonesia)
Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia)
Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia)
Teguh Triono (Herbarium Bogoriense, Indonesia)
Marlina Ardiyani (Herbarium Bogoriense, Indonesia)
Eizi Suzuki (Kagoshima University, Japan)
Jun Wen (Smithsonian Natural History Museum, USA)

Managing editor
Himmah Rustiami (Herbarium Bogoriense, Indonesia)

Secretary
Endang Tri Utami

Lay out editor
Deden Sumirat Hidayat

Illustrators
Subari
Wahyudi Santoso
Anne Kusumawaty

Reviewers
Ed de Vogel (Netherlands), Henk van der Werff (USA), Irwati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany).

Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to:
HERBARIUM BOGORIENSE, BOTANY DIVISION,
RESEARCH CENTER FOR BIOLOGY– LIPI,
CIBINONG 16911, INDONESIA
E-mail: reinwardtia@mail.lipi.go.id
DICKSONIA TIMORENSE (DIKSONIACEAE), A HEMI-EPIPHYTIC NEW SPECIES OF TREE FERN ENDEMIC ON TIMOR ISLAND, INDONESIA

Received March 22, 2012; accepted July 28, 2012.

BAYU ADJIE & AGUNG KURNIAWAN
Bali Botanic Garden, Indonesian Institute of Sciences, Candikuning, Baturiti, Tabanan 82191, Indonesia. E-mail: biobayu@gmail.com

NORIO SAHASHI
Faculty of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.

YASUYUKI WATANO
Faculty of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.

ABSTRACT


Keywords: Dicksonia, Timor, Indonesia, new species, endemic, hemi-epiphytic, cpDNA.

ABSTRAK


Kata kunci: Dicksonia, Timor, Indonesia, jenis baru, endemic, hemi-epifitik, cpDNA.

INTRODUCTION

The family Dicksoniaceae sensu Kubitzki (1990) currently recognized is not monophyletic (Koral et al., 2006). Smith et al. (2006) delimit Dicksoniaceae to include only three genera (Calochlaena, Dicksonia, and Lophosoria) as monophyletic group with ca. 30 spp. Among the genera of the family, Dicksonia has a tree-like form. Dicksonia L’Hér. Comprises 20–25 species, distributed from Central and South America, throughout Pacific to the Samoa, New Caledonia, New Guinea, Australia to New Zealand; most species occur in Malesia in montane forest (Kubitzki, 1990; Large & Braggins, 2004). In Indonesia, four species known so far D. blumei (Kunze) Moore, D. mollis Holttum, D. archboldii Copel. and D. lanigera Holttum (Holttum, 1963). Dicksonia blumei distributed through Sumatra, Java and Central Celebes; D. mollis distributed in NE. Borneo, Central Celebes and Philippines; D. archboldii only known from the type collection of West New Guinea and Mt. Arfak; and D. lanigera distributed in West and East New Guinea.

Two expeditions by Arinasa and Lugrayasa in 1995 and 1996 to Mutis Nature Reserve, Timor islands discovered a small population of Dicksonia with about 50 plants. They brought 18 young plants to Bali Botanic Garden, and 14 of them are well established at Cyathea Park. Morphological examinations have provided important clues that the tree fern is distinct species to described known species. Moreover, DNA sequences can provide robust evidences for species identity as well as their phylogenetic relationships among species.

Taxon Sampling, DNA isolation, amplification, and sequencing

Genomic DNA was extracted from silica-dried, leaf material using a modified Doyle & Doyle (1987). Two regions of cpDNA (rbcL gene and trnL (UAA) 5’exon to trnF (GAA), later called trnL-F IGS) were amplified separately using the polymerase chain reaction (PCR), following established protocols (Hasebe et al., 1994; Taberlet et al., 1991). The PCR products were purified using the Geneclean II kit (Qbiogene, Irvine, CA, USA) after
electrophoresis in 1% agarose gel and used as templates for direct sequencing. Sequencing reactions were carried out with a BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA). All sequencing reactions were processed using ABI 310 Genetic Analyzer (Applied Biosystems). Sequence fragments were analyzed using the Sequencing Analysis v5.2 (Applied Biosystems) and assembled by use of SeqScape v2.5 (Applied Biosystems). DNA sequences were deposited in GenBank as part of this study.

For this purpose several rbcL sequences of Dicksoniaceae family was downloaded from GenBank and used as ingroup. Cibotium barometz was chosen as outgroup for rooting based on previous study (Korall et al., 2006) as in Table 1.

**Alignment and phylogenetic analysis**

The rbcL sequences were aligned automatically by use of ClustalW (Higgins et al., 1994). Aligned sequence was then used for phylogenetic analysis using MEGA 5 software (Tamura et al., 2011). The distance (Neighbor-Joining tree) and parsimony (Maximum Parsimony) methods were used to construct the phylogenetic tree. Confidence values were calculated with bootstrap procedure (Felsenstein, 1985) in 1000 replicates.

A 1229 bp of rbcL gene was successfully sequenced, while a 361 bp sequenced from trnL-F IGS. Alignment of rbcL sequences produce 1183 bp with no indels that are used for analysis. The topology of NJ tree was identical with MP tree as presented with bootstrap values shown along the

<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>rbcL</th>
<th>trnL-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dicksonia timorensense</td>
<td>HQ334990*</td>
<td>AY626843*</td>
</tr>
<tr>
<td>2.</td>
<td>Dicksonia antarctica</td>
<td>DAU05919</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>Dicksonia gigantea</td>
<td>GI99640797</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>Dicksonia arborescens</td>
<td>AM177340</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>Dicksonia squarrosa</td>
<td>AM177344</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>Dicksonia lanata</td>
<td>AM177343</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>Dicksonia thyropteroides</td>
<td>AM177345</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>Dicksonia fibrosa</td>
<td>AM177341</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>Dicksonia blumei</td>
<td>HQ334991*</td>
<td>AY626841*</td>
</tr>
<tr>
<td>10.</td>
<td>Lophosoria quadripinnata</td>
<td>AF101303</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>Calochlaena dubia</td>
<td>U05615</td>
<td>-</td>
</tr>
<tr>
<td>12.</td>
<td>Calochlaena villosa</td>
<td>AM177327</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td>Cibotium barometz</td>
<td>AM177328</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 1. The phylogenetic tree showing the position of Dicksonia timorensense. The tree was inferred using the Neighbor-Joining method. The percentage of replicate trees in which the associated taxa clustered together in the Bootstrap test (1000 replicates) is shown.
Fig. 2. *Dicksonia timorense* B. Adjie illustrated. A. Young plant in cultivation; B. Pinnac; C. Pinnules; D. Pinnules with sori; E. Macroscopic hair.

Fig. 3. *Dicksonia timorense* B. Adjie. A. Young plant in natural habitat; B. Type specimens in cultivation; C. Top part of trunk; D. Hairs on stipe; E. Macroscopic hair; F. Pinnules with mature sori; G. Pinnule with young sori.
similar making it difficult to identify based on the sequence (Fig. 1). Unfortunately, the trnL-F sequence of *D. fibrosa* is unavailable from the GenBank so that we are unable to compare the sequence with *D. timorense*.

**TAXONOMY SECTION**

*Dicksonia timorense* B. Adje sp. nov. — Fig. 2 & 3

Tree fern with pale brown hairs covered stipe base, closely resembles to *D. fibrosa* in frond morphology and persistency, differ in stipe length and number of sori per pinnule lobe. It is readily distinguished from *D. blumei* by the hair color and spore morphology. — Type: Indonesia, Timor Island, Nusa Tenggara Timur, Mutis Nature Reserve, Bukit Lelofui, 1760 m, cultivated in Bali Botanic Garden, Bayu Adje BA653 (Holotype the Herbarium of Bali Botanic Garden; Isotype BO, K).

*Tree* fern with trunk up to 5 m in height, diameter 20 cm, number of fronds up to 36, stipe bases persistent; stipe covered by pale brown hairs 15–20 mm long; lower part of stipe and main rachis green. *Frons* total length 170–230 cm; stipe 33–55 cm long, width 1.5–2 cm, thickness 1.5 cm; rachis 130–170 cm long; distance from basal pinna to next pinna 11–13 cm, number of pinna 44–46 including final terminal pinna. *Pina* longest pinna 28–36 cm long, 8–11 from base position on rachis, number of sori per pinnule lobe 3–5 rarely 6, large, globose, marginal, and under the hooded edges of the lobes; indusia oblong to circular; lobes not reduced when fertile; fertile pinnae 7–10; basal pinnae not reduced but much smaller, 10–22 cm long, sterile; *pinules* to 50 by 10 mm; costules of tertiary leaflets 5 mm apart; largest fertile tertiary leaflets lobed throughout almost to the costule, with 2 pairs rarely 3 of soriferous lobes, the lowest lobes usually bilobulate with forked vein, rest veins in pinnule lobes pinnate or simple. *Spores* yellow, trilette, proximal face depressed between partly obscured laesurae with distal face densely granulate, margins somewhat shrunk (as can be seen in Fig. 4).

**Distribution.** Indonesia, Nusa Tenggara Timur, Timor Island: endemic to Mt. Mutis Nature Reserve (NR) at Bukit Lelofui.

**Habitat.** Upper montane forest, shaded area; ca. 1760 m asl. in a valley between two ridges separated by creek.

**Population.** *Dicksonia timorense* is currently only known from a single population from Mutis NR. Recently, the first and second authors visited the
species natural habitat after it was first discovered 15 years ago. The habitat is almost undisturbed as described in Arinasa (2007), the individual number has increased from 50 to ca. 68 adult plants and eight juveniles. However, this fragile ecosystem could be easily disturbed due to extensive cattle and horse grazing.

**Etymology.** The name refers to the island of Timor where the species is found.

**Notes.** *Dicksonia timorensis* B. Adzie is recognized by its pale brown hairs that are easily removed and abundant fronds. In cultivation the sori are very rare, in one tree only 1–3 fronds have sorus; sometimes there is no fertile frond at all. However, in the natural populations sori are abundantly found on fronds. *Dicksonia timorensis* closely resembles New Zealand’s *D. fibrosa*, notably in frond morphology, persistent and similarity in *rbcL* sequence. It differs from *D. fibrosa* in the number of sori per pinnule lobe (mostly six) and the life habit (solitary). *Dicksonia fibrosa* from the Chatham islands bear strong similarity to the Australian *D. antarctica* (Large & Braggins, 2004); however, there are three different nucleotides substitution in the *rbcL* sequences. *Dicksonia timorensis* is readily distinguished from *D. blumei* by the hair color (red-brown shining hairs) and spore morphology (distal face showing irregular lumina and small pits on muri, unpublished data).

In recent observations of their natural habitat, the species has a remarkable hemi-epiphytic phenomenon: young plants are always deeply attached to and growing on *Cyathea* trunks about 1 m from ground level; no young plants found growing on soil. Once the *Dicksonia* roots reach the ground, the *Cyathea* fronds die and fall. And then, after the roots and trunk of *Dicksonia* are strongly attached in the ground, the *Cyathea* trunk will fall. In some adult trees it was observed that the base of the *Cyathea* host trunk remain attached to the *Dicksonia* trunk. We assume this hemi-epiphytic habit to gain some “ecological” advantage from the host. The presence

---

**Fig. 5.** Hemi-epiphitic habitat of *Dicksonia timorensis*. A. Young sporophyte attached to *Cyathea* trunk; B. *Dicksonia’s* roots reach the ground; C. *Cyathea* become dead (arrow); D. Adult sporophyte.
of hemi-epiphytic on tree fern trunk has been reviewed by Page & Brownsey (1986), but mostly by flowering plants such as *Ackama rosaefolia* (Cunoniaceae), *Metrosideros robusta* (Myrtaceae), *Pseudopanax arboreus*, *P. edgerleyi* (Araliaceae), and *Weinmannia racemosa* and *W. silvicola* (Cunoniaceae). Therefore, the hemi-epiphytic habit in *Dicksonia* is firstly described. The hemi-epiphytic habit can be seen in Fig. 5.

ACKNOWLEDGEMENT

We wish to thank Dr. Robert Johns for drawing our attention to this plant during a recent visit to Bali. We especially thank Director of Bali Botanic Garden who provided facilities, IBK Arinasa and IDP Darma the two chiefs on the Muts expedition in 1995 and 1996. We thank Dr Tadashi Kajita (Chiba University) for handling spores. We are grateful to the head of BBKSDA Kupang for research permit, park rangers Peter Didok and Soleman Toto, and Siwa “Siw” Ann our local guide; I Made Sudi, I Ketut Sandi for field assistance. Special thanks to I Made Sumerta for line drawing. The field trip was funded by research incentive grant for researcher and engineer no. 77/M/Kp/II/2011 to BA.

REFERENCES


INSTRUCTION TO AUTHORS

Reinwardtiu is a scientific journal on plant taxonomy, plant ecology, and ethnobotany. Manuscript intended for a publication should be written in English represent an article which has not been published in any other journal or proceedings. Every manuscript will be sent to two blind reviewers.

Two printed copies (on A4 paper) of the manuscript of not more than 200 pages together with an electronic copy prepared on Word Processor computer program using Time New Roman letter type and saved in Rich Text File must be submitted.

For the style of presentation, authors should follow the latest issue of Reinwardtiu very closely. Title of the article should be followed by author’s name and mailing address in one-paragraphed English abstract of not more than 250 words. Keywords should be given below each abstract. On a separated paper, author(s) should send the preferred running title of the article submitted.

Taxonomic identification key should be prepared using the aligned couplet type.

Strict adherence to the International Code of Botanical Nomenclature is observed, so that taxonomic and nomenclatural novelties should be clearly shown. Latin description for new taxon proposed should be provided and the herbaria where the type specimens are deposited should be presented in the long form that is name of taxon, author’s name, year of publication, abbreviated journal or book title, volume, number and page.

Map, line drawing illustration, or photograph preferably should be prepared in landscape presentation to occupy two columns. Illustration must be submitted as original art accompanying, but separated from the manuscript. On electronic copy, the illustration should be saved in jpg or gif format at least 350 pixels. Legends or illustration must be submitted separately at the end of the manuscript.

Bibliography, list of literature cited or references follow the Harvard system.
SRI ENDARTI RAHYU, TATIK CHIKMAWATI, KUSWATA KARTAWINATA & ALEX HARTANA. Morphology vs. taxonomy in the family Pandanaceae: a case study in the Javanese species ..................317

SRI RAHYU. Hoya (Apocynaceae: Asclepiadoideae) diversity in Gunung Gede Pangrango National Park, West Java, Indonesia ........................................................................................................331

DEBY ARIFIANI, ADI BASUKRIADI & TATIK CHIKMAWATI. Newly described species of Endiandra (Lauraceae) from New Guinea ..................................................................................341

ALEX SUMADIJAYA. Six years experience on plant identification services: case study in Herbarium Bogoriense ..................................................................................................................347

BAYU ADJIE, AGUNG KURNIAWAN, NORIO SAHASHI & YASUYUKI WATANO. Dicksonia timorense (Dicksoniaceae), a hemi-epiphytic new species of tree fern endemic on Timor Island, Indonesia 357

IAN M. TURNER. Nomenclatural notes relevant to the flora of Indonesia ........................................363

WITA WARDANI, ARIEF HIDAYAT & DEDY DARNAEDI. The new pteridophyte classification and sequence employed in The Herbarium Bogoriense (BO) for Malesian ferns ........................................367

DIAH SULISTIARINI. The orchids genus Ditochia in Indonesia .......................................................379

DEDY DARNAEDI. Book review ...................................................................................................389

Reinwardtia is a LIPI accredited Journal (258/AU 1/P2MBI/05/2010)

Herbarium Bogoriense
Botany Division
Research Center for Biology – LIPI
Cibinong, Indonesia