PERTUMBUHAN BEBERAPA ISOLAT MIKROBA DARI BERBAGAI LIMBAH INDUSTRI PADA BENZAMIDA

Nunik Sulistinah, Bambang Sunarko
| Abstract views: 455 | PDF views: 374

Abstract

Twenty five microbes could be isolated from industrial effluents.Seven isolates of those examined microbes were able to grow on benzamide as sources of carbon,energy,and nitrogen..The highest growth on benzamide was shown by bacterial isolate D1.Besides on benzamide, isolate D1 could grow on acetamide,acrylamide, benzamide,nicotinamide and propionamide, respectively.. On carboxylic acids, however isolate D1 could grow only on acetic acid, propionic acid, and benzoic acid as carbon and energy sources.When isolate D1 grew on 40 mM benzamide, the doubling time(\j was 6 h 40 minutes, the specific growth rate (\J) was 0,046 h'\ the attained maximum cell biomass was 4.96 g cell dry weigtAiter medium, and the yield coefficient (Y) was 124 g cell dry weight/mole benzamide.

Keywords

benzamide, industrial effluents, microbial isolates, growth, bacterial isolate D1, carboxylic acids.

Full Text:

PDF

References

Beard T, Cohen MA, Parrat JS. Tuner NJ,Crosby J & Moilliot. J. 1993. Stereoselective Hydrolysis of Nitriles and Amides Under Mild Conditions Using a Whole Cell Catalyst. Tetrahedron: Asymmetry, 4, 1085-1104.

Clarke PH & Ornston N. 1975. Metabolic Pathways and Regulation II. Dalam: Clarke, P. H and M. H. Richmond (Eds.). Genetics and Biochemistry of Pseudomonas, 263-340. John Willey, London.

Clarke PH. 1970. The Aliphatic Amidases of Pseudomonas aeruginosa. Adv. In Microb.Physiol., 4, 179-222

Clarke PH. 1972. Biochemical and Immunological Comparison of Aliphatic Amidases Produced by Pseudomonas species. J. Gen. Microbiol. 71, 241-257.

Collin PA & Knowles C J. 1983. The Utilization of Nitriles and Amides by Nocardia rhodochrous. J. Gen. Microbiol. 129,711-718.

Effenberger F & Bohme J. 1994. Enzyme-Catalyzed Enantioselective Hydrolysis of Racemic Naproxen Nitrile. Bioorg. Med.Chem. 7,715-721.

Friedrich GC & Mitrenga G. 1981. Utilization of Aliphatic Amides and Formation of Two Different Amidases by Alcaligenes eutrophus. J. Gen. Microbiol. 125, 367-374.

Gerhardt P &. Drew SW. 1994. Liquid Culture. In: Gerhart, P., R.G.E. Murray, W.A. Wood, and N. R. Krieg (eds.). Methods for General and Molecular Bacteriology. ASM., Washington, D.C., 248-277

Koch AL. 1994. Growth Measurement. In: Gerhart, P., R.G.E. Murray, W.A. Wood, and N. R. Krieg (eds.). Methods for General and Molecular Bacteriology. ASM., Washington, D.C., 224-247.

Meyer O & Schlegel HG. 1983. Biology of Aerobic Carbon Monoxide Oxidizing Bacteria. Ann. Rev. Microbiol. 37, 277-310.

Nagasawa T, Nanaba H, Ryuno K, Takeuchi K, Yamada H. 1987. Nitrile Hydratase of Pseudomonas chlororaphis B23. Eur. J. Biochem., 162, 1305-1312.

Pfennig N. 1974. Rhodopseudomonas globiformis sp.n., A New Species of the Rhodospirillaceae. Arch. Microbiol. 100, 197-206.

Ramirez F, Monroy O, Favela E, Guyot JP & Cruz F.. 1998. Acetamide Degradation by A Continuous-fed Batch Culture of Baccillus sphaericus. Appl. Biochem. Biotechnol., 70-72, 215-223.

Sunarko B. 1995. Mikrobieller Abau von Acetonitril und Vinylacetat und Characterisierung von Vinylacetatesterase. Dissertation. Universitat Bayreuth, Bayreuth, 135-165.

Vaughan PA, Cheetham PSJ & Knowles CJ. 1988. The Utilization of Pyridine Carbonitriles and Carboxamides by Nocardia rhodochrous LL100-21. J. Gen. Microbiol. 134,1099-1107.

Wyatt JM & Linton EA. 1988. The Industrial Potensial of Microbial Nitrile Biochemistry. Dalam: Mehnert J, Brimer L. (Eds.), Cyanide Compounds in Biology. John Wiley & Sons, Chichester, 32-42.


Refbacks

  • There are currently no refbacks.