PHOSPHATASE ACTIVITY OF Bacillus sp. ISOLATED FROM FOREST SOIL OF GUNUNG HALIMUN NATIONAL PARK

[Aktifitas Fosfatase *Bacillus* sp. yang Diisolasi dari Tanah Hutan di Taman Nasional Gunung Halimun]

I Made Sudiana

Research Center for Biology, The Indonesian Institute of Science Jl. Juanda 18 Bogor 16122, Telp 251-324006, Fax. (251) 325854 E-mail: sudianai@yahoo.com

ABSTRACT

Bacillus sp diisolasi dari tanah Taman Nasional Gunung Halimun. Dalam media tumbuh yang mengandung $Ca_3(PO4)_2$ bakteri membentuk zona bening disekitar koloni. Glukosa digunakan dengan cepat selama kultivasi. Tinggi konsentrasi fosfat terlarut yang dibebaskan selama fase pertumbuhan menunjukkan bahwa bakteri mampu memacu pelarutan $Ca_3(PO4)_2$. Selama fase pertumbuhan terjadi hidrolisa organik fosfat (phenyl phosphate) menghasilkan phenol dan fosfat hal ini menunjukkan, bahwa *Bacillus* sp mampu menggunakan organik fosfat. Selama kultivasi terjadi penurunan pH sejalan dengan pelarutan $Ca_3(PO4)_2$.

Kata kunci: Bacillus, aktifitas fosfat, Taman Nasional Gunung Halimun.

INTRODUCTION

Soil microflora play significant role in transformation of both either organic and inorganic phosphorous (Alexander, 1961). Soil microorganisms produce phosphatase enzymes enable the microorganism hydrolyze phosphorous and becomes available for plant growth. To determine the activity of phosphatase in soil some methods were proposed (Tabatabaii, 1982). Basically phosphate ester bound compound such as p-naftilphosphate, phenylphosphate, pnitrophenylphosphate, bis p-nitrophenylphosphate, tris p-nitrophenylphosphate, and p-nitrophenyl phosphorylcholin. Of which P-naftilphosphate, phenylphosphate, p-nitrophenylphosphate is mostly for determining phosphomonoesterase used The presence of those substances in activity. solution stimulate the microbe produce enzyme and finally hydrolize the ester bound phosphate, and thereby the hydrolysis product is quantified. Phosphodiesterase hydrolyze nucleic acids and found in microorganism, plant and animal. The activity phosphotiestearse in soil was found in 1976, but not much attention is given further (Dick et al., 2000). Phospholipid is a component of cell membrane of most organism containing cholin.

Phospholiplase-C has capacity to hydrolyze lecithin to 1.2 digleceraldehyde, choline phosphorine, many bacteria has capacity to produce that enzyme. Many works have been devoted to kinetic verify the and characteristic of phosphomonoesterase (PME). Categorized as the hydrolase group enzyme owing to its capacity to introduce H₂O molecule substituting ester bonded phosphate. Mainly produced when soil limited in ionic phosphorous, of which excreted mainly by microbes and soil animal but rare by plant (Schiner et al, 1996). Bacterial cell P is mineralized quickly, phospholipid, and DNA are dephosphorelated in a short period. P in microbial RNA is released more slowly. Our present work aimed at studying the characteristic of PME produced by soil bacteria.

MATERIALS AND METHODS

Isolation and identification

Bacillus sp was isolated from soil of Gunung Halimun National Park using Pivoskaya medium contained : $5 \text{ g } \Gamma^{\text{tl}}$ Ca3(PO4)2 Γ^{tl} , $10 \text{ g } \Gamma^{\text{tl}}$ glucose, 0.2 g Γ^{tl} NaCl, 0.2 g Γ^{tl} KC1, 0.0025 g 1" MnSO4.H2O, 0.1 g Γ^{tl} MgSO4 7H2O, 0.0025 g 1" FeSO4 7H2O, 0.5 g Γ^{tl} yeast extract. The isolated

49

bacterium was the n growth maintaining media NA for further physiological studies.

Enzyme assay

Several methods were available for PME activity assay (Tabatabai, 1978; Dick and Tabatai, 1986). Our present study used p-nitrophenyl phosphate as a model substrate and released pnitrophenol was measured spectrophotometrically. The basic principle of PME assay, P-nitrophenyl phosphate is added into supernatant culture and incubated for 1 h at 37°C. P-nitrophenol released is extracted with NaOH. then measured and spectrophotometrically at 400 nm. Enzyme activity is expressed as umoll p-nitophenol released per 1 supernatant. PME assay also can be conducted using phenylphosphate as enzim substrate, phenol released are then quantified spectrophotometrically.

Glucose consumption

Amount of glucose utilized was determined by dinitrosalycycilic method (Miller, 1959), and culture growth was measured spectrophoto-metrically

RESULT

The activity PME ase and the population of PSB in soil of GHNP is shown Figure 1 indicating that PME ase play significant role in accelerating phosphate mineralization in soil, and those enzymes are mainly produced by PSO (Tabatabai, 1978).

Figure 1. PME-ase activity and the population of phosphate solubilizing bacteria (Rahmansyah *et al.*, 2000).

PME activity is correlated with population of phosphate solubilizing organism implying tha: most of the phosphate mineralization in soil is conducted by microorganism.

pН

During culture growth pH was fluctuatec and they may affect the phosphate species in solution. At the beginning of incubation the pH o: culture decreased dramatically (Figure 2).

Figure 2. Profile of pH during culture incubation ir Pivoskaya Medium

Release of proton have remarkabK decreased pH value (equation 3). pH has potentia effect on the activity of enzymes by altering the functional active site of enzyme, altering solubilin of substrate, changing the adsorption rate, and altering the substrate enzyme binding.

Growth of culture

Rapid growth of culture was observed ir Pivoskaya medium. The carbon sources utilizec mainly from glucose. After glucose was limited, cell growth was suppressed (Figure 3).

Figure 3. Growth of culture

Glucose

Many author used glucose as main carbon sources for phosphate solubilizing bacteria. Glucose was easily used by microorganism as indicated by a rapid decrease of glucose during cultivation. About 90 % of glucose was utilized (Figure 4). Glucose could be converted into reserve materials or for electron donor in fermentation processes for production organic acids of (Cosgrove, 1967).

Figure 4. Glucose consumption during culture growth

Phosphate solubilization

Maximum P-released was after 2 days incubation was 2003 |ig/L (Figure 5). The relation between pH and P-dissolution is in consistent

Figure 5. Phosphate released during culture growth

Activity PME ase

PME ase is a group of hydrolase enzyme which responsible for addition of H2O molecule

into ester phosphate bound. The activity of PMEase was determined at pH 6.5, 38 C and incubated for 45 minutes. CaCl₂ was added to stop enzyme reaction and the activity is expressed as microgram />-NP/ml enzyme/ incubation time. And the specific activity is expressed as unit enzyme per mg protein. The Activity of PME-ase is shown in Figure 6. Maximum activity was observed when culture growth was maximum implying that enzyme activity was linked to cell growth.

Figure 6. Activity of PME-ase

DISCUSSION

Many factor affecting availability of phosphorous to plant growth (Tabatabai, 1982). The presence of phosphate solubilizing organism (Table 1) which have capacity to solubilize P than it is necessary for its metabolism will enhance mineralization of phosphate in soil. Soil of GHNP contained a number of bacteria that are able to solubilize Ca₃(PO₄)₂ which was dominated by Bacillus sp is able to grow rapidly in Pivoskaya medium and forming clearing zone implying they sofubiTi'ze inorganic phosphate are abfe to (Alexander, 1961). Table 1 also indicates that PSO is quite diverse in soil consisted of yeast, bacteria and fungi.

Bacteria Mineral - Bacillus sp., B. fulvifaciens, B. megaterium, B. circulans, B. subtilis, B. mycoides, B. mesenlericus, B. fluorescence, B. circulans Tricalcium phosphate - Pseudomonas sp., P. Putida, P. liquifaciens, P. calcis, P. rathonia Tricalcium phosphate - Escherichia freundii, E. intermedia hydroxyapatite - Stanthomonas sp. Fluorobacterium phosphate - Flavobacterium spp. Rock phosphate - Stanthomonas sp. Nitorosphate - Achromobacter spp. Organic - Achromobacter spp. Organic - Achromonas sp. Phytin - Thiobacillus thiooxidans Phytin - Thiobacillus sp. Javus, A. fumigatus, A. lerreus, A. - Aspergillus sp. P. lilacinum, P. digitatum Phenyl phosphate - Fusition sp., Acrothecium sp., Phoma sp. Mortierella sp., Accothecium sp., Phoma sp. - Cladosporium sp., Rhodotulla sp. Candida sp. - Cunninghamella sp., Rhodotulla sp. Schwanniomyces occidentalis - Oidedendron sp. Pseudogymnoascus sp. Schwanniomyces occidentalis <	Microorganism	Phosphate source
 Bacillus sp., B. fulvifaciens, B. megaterium, B. circulans, B. subtilis, B. mycoides, B. mesenlericus, B. fluorescence, B. circulans Pseudomonas sp., P. Putida, P. liquifaciens, P. calcis, P. rathonia Escherichia freundii, E. intermedia Xanthomonas spp. Flavobacterium spp. Serratia spp. Alcaligenes spp. Achromobacter spp. Phytina spp. Thiobacillus thiooxidans Fungi Aspergillus sp. A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., A. rothecium sp. Cladosporium sp., Akinger, Sp. Cladosporium sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. 	Bacteria	Mineral
B. mycoides, B. mesenlericus, B. fluorescence, B. circulans Calcium phosphate Pseudomonas sp., P. Putida, P. liquifaciens, P. calcis, P. rathonia Iron phosphate Escherichia freundii, E. intermedia hydroxyapatite Xanthomonas spp. Flavobacterium spp. Brevibacterium spp. Rock phosphate Alcaligenes spp. Organic Achromobacter spp. Organic Achromobacter aerogenes Calcium phytate Erwinia spp. Phytin Itrosomonas spp. Phytin Itrosomonas spp. Phytin Alcaligenes spp. Phytin Achromobacter aerogenes Calcium phytate Erwinia spp. Phytin Itrosomonas spp. Phytin Thiobacillus thiooxidans Phytin Lecithin Phenyl phosphate Other organic phosphate Other organic phosphate Fungi Aspergillus sp., A. niger, A. jlavus, A. funigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis <	- Bacillus sp., B. fulvifaciens, B. megaterium, B. circulans, B. subtilis,	Tricalcium phosphate
 Pseudomonas sp., P. Putida, P. liquifaciens, P. calcis, P. rathonia Escherichia freundii, E. intermedia Xanthomonas spp. Flavobacterium spp. Brevibacterium spp. Serratia spp. Alcaligenes spp. Achromobacter aerogenes Erwinia spp. Thiobacillus thiooxidans Fungi Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., F. lilacinum, P. digitatum Fusarium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Akizoctonia sp. Cunninghamella sp., Rhodotulla sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. 	B. mycoides, B. mesenlericus, B. fluorescence, B. circulans	Calcium phosphate
 Escherichia freundii, E. intermedia Kanthomonas spp. Flavobacterium spp. Brevibacterium spp. Serratia spp. Alcaligenes spp. Alcaligenes spp. Achromobacter spp. Achromobacter spp. Achromobacter aerogenes Erwinia spp. Nitrosomonas spp. Thiobacillus thiooxidans Fungi Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., F. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythim sp., Acrothecium sp., Shizoctonia sp. Cladosporium sp. Rhizoctonia sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. 	- Pseudomonas sp., P. Putida, P. liquifaciens, P. calcis, P. rathonia	Iron phosphate
 Xanthomonas spp. Kanthomonas spp. Flavobacterium spp. Brevibacterium spp. Serratia spp. Alcaligenes spp. Achromobacter spp. Achromobacter spp. Achromobacter aerogenes Erwinia spp. Nitrosomonas spp. Nitrosomonas spp. Nitrosomonas spp. Thiobacillus thiooxidans Phytin Lecithin Phensyl phosphate Other organic phosphate Gurvularia lumata, Humicola sp., Sderotium rolfsii Pythium sp., Ac rothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. 	Escherichia freundii, E. intermedia	hydroxyapatite
Flavobacterium spp. Rock phosphate Brevibacterium spp. Serratia spp. Alcaligenes spp. Organic Achromobacter spp. Organic Achromobacter aerogenes Calcium phytate Erwinia spp. Phytin Nitrosomonas spp. Phytin Thiobacillus thiooxidans Phytin Lecithin Phenyl phosphate Other organic phosphate Other organic phosphate Fungi Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. Pseudogymnoascus sp.	Xanthomonas spp.	Fluoroapatit
Brevibacterium spp. Serratia spp. Alcaligenes spp. Achromobacter spp. Aerobacter aerogenes Erwinia spp. Nitrosomonas spp. Thiobacillus thiooxidans Phytin Lecithin Phenyl phosphate Other organic phosphate Curvularia lunata, Humicola sp., Schorotium rolfsii	Flavobacterium spp.	Rock phosphate
Serratia spp.Alcaligenes spp.Achromobacter spp.Achromobacter aerogenesErwinia spp.Nitrosomonas spp.PhytinThiobacillus thiooxidansPhytinLecithinPhenyl phosphateOther organic phosphateSerratia unata, Humicola sp., Sderotium rolfsiiPythium sp., P. lilacinum, P. digitatumFusarium sp., F. oksisporumCurvularia lunata, Humicola sp., Sderotium rolfsiiPythium sp., Acothecium sp., Phoma sp.Mortierella sp., Paecilomyces sp.Cladosporium sp. Rhizoctonia sp.Cunninghamella sp., Rhodotulla sp.Candida sp.Schwanniomyces occidentalisOideodendron sp.Pseudogymnoascus sp.	Brevibacterium spp.	
Alcaligenes spp. Organic Achromobacter spp. Organic Aerobacter aerogenes Calcium phytate Erwinia spp. Phytin Nitrosomonas spp. Phytin Thiobacillus thiooxidans Phytin Lecithin Phenyl phosphate Other organic phosphate Other organic phosphate Fungi Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	Serratia spp.	
Achromobacter spp.OrganicAerobacter aerogenesCalcium phytateErwinia spp.PhytinNitrosomonas spp.PhytinLecithinPhenyl phosphateOther organic phosphateOther organic phosphateSungiAspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A.awamoriPenicillum sp., P. lilacinum, P. digitatumFusarium sp., F. oksisporumCurvularia lunata, Humicola sp., Sderotium rolfsiiPythium sp., Acrothecium sp., Phoma sp.Mortierella sp., Paecilomyces sp.Cladosporium sp. Rhizoctonia sp.Cunninghamella sp., Rhodotulla sp.Candida sp.Schwanniomyces occidentalisOideodendron sp.Pseudogymnoascus sp.	Alcaligenes spp.	
Aerobacter aerogenesCalcium phytateErwinia spp.PhytinNitrosomonas spp.PhytinThiobacillus thiooxidansLecithinPhenyl phosphateOther organic phosphateOther organic phosphateOther organic phosphatefungiAspergillus sp A. niger, A. jlavus, A. fumigatus, A. lerreus, A.awamoriPenicillum sp., P. lilacinum, P. digitatumFusarium sp., F. oksisporumCurvularia lunata, Humicola sp., Sderotium rolfsiiPythium sp., Acrothecium sp., Phoma sp.Mortierella sp., Paecilomyces sp.Cladosporium sp. Rhizoctonia sp.Cunninghamella sp., Rhodotulla sp.Candida sp.Schwanniomyces occidentalisOideodendron sp.Pseudogymnoascus sp.	Achromobacter spp.	Organic
Erwinia spp.PhytinNitrosomonas spp.PhytinThiobacillus thiooxidansLecithinPhenyl phosphateOther organic phosphateGungiAspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A.awamoriPenicillum sp., P. lilacinum, P. digitatumFusarium sp., F. oksisporumCurvularia lunata, Humicola sp., Sderotium rolfsiiPythium sp., Acrothecium sp., Phoma sp.Mortierella sp., Paecilomyces sp.Cladosporium sp. Rhizoctonia sp.Cunninghamella sp., Rhodotulla sp.Candida sp.Schwanniomyces occidentalisOideodendron sp.Pseudogymnoascus sp.	Aerobacter aerogenes	Calcium phytate
Nitrosomonas spp. Phytin Thiobacillus thiooxidans Lecithin Phenyl phosphate Other organic phosphate Fungi Aspergillus sp A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	Erwinia spp.	
 Thiobacillus thiooxidans Thiobacillus thiooxidans Lecithin Phenyl phosphate Other organic phosphate Fungi Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. 	Nitrosomonas spp.	Phytin
 Phenyl phosphate Other organic phosphate Fungi Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. 	- Thiobacillus thiooxidans	Lecithin
Other organic phosphate Fungi Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.		Phenyl phosphate
 Fungi Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. 		Other organic phosphate
 Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A. awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. 	Fungi	Ce
awamori Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	Aspergillus sp., A. niger, A. jlavus, A. fumigatus, A. lerreus, A.	
 Penicillum sp., P. lilacinum, P. digitatum Fusarium sp., F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp. 	awamori	
Fusarium sp F. oksisporum Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	Penicillum sp., P. lilacinum, P. digitatum	
Curvularia lunata, Humicola sp., Sderotium rolfsii Pythium sp., Acrothecium sp., Phoma sp. Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	Fusarium sp F. oksisporum	
Pythium sp., Acrothecium sp., Phoma sp.Mortierella sp., Paecilomyces sp.Cladosporium sp. Rhizoctonia sp.Cunninghamella sp., Rhodotulla sp.Candida sp.Schwanniomyces occidentalisOideodendron sp.Pseudogymnoascus sp.	Curvularia lunata, Humicola sp., Sderotium rolfsii	
Mortierella sp., Paecilomyces sp. Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	Pythium sp., Acrothecium sp., Phoma sp.	
Cladosporium sp. Rhizoctonia sp. Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	Mortierella sp., Paecilomyces sp.	
Cunninghamella sp., Rhodotulla sp. Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	Cladosporium sp. Rhizoctonia sp.	
Candida sp. Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	Cunninghamella sp., Rhodotulla sp.	
Schwanniomyces occidentalis Oideodendron sp. Pseudogymnoascus sp.	<i>Candida</i> sp.	15
Oideodendron sp. Pseudogymnoascus sp.	Schwanniomyces occidentalis	
Pseudogymnoascus sp.	Oideodendron sp.	
	Pseudogymnoascus sp.	

Table 1. List of Phosphate Solubilizing organism (Rao, 1982).

important aspect of soil pH One is determining the oxidation state of phosphate in soil. The fluctuation of pH is chemically controlled mechanisms (Kpomblekou by several and Tabatabai, 1994). Lowering pH value in solution as a result of production of organic acids such as citric, glutamic acids, oxalic and acids (Kpomblekou and Tabatabai, 1994). Those organic acids bound with Ca²⁺, Mg²⁺, Fe³⁺ and Al³⁺ (Rao, 1982) result in released of ionic P. Released P will a part bound to Fe, Al and a part will be water soluble and thus available for plant. Released Ca, a part will bound with organic acids forming organic complex, and the remaining will bound with soil

colloid, via cation exchange. When exchanged Ca increased result in increases of basic saturation, and thus increase pH values (Tabatabai, 1982). Pdissolution correlated with pH of culturing medium was observed by (Rao, 1982). Oxidation of ammonium in soil caused soil acidification (reaction 1)

Beside soil acidity, several mechanisms are reported to affect phosphorous dissolution. Cosgrove, 1967 proposed that proton (H^+) released from cytoplasm to outer membrane as an exchange of NH_4^+ absorption, or releasing H^+ by ATP-ase utilizing energy derived from hydrolysis of ATP. Other mechanism could be direct solubilization of P took place in cell surface and produced soluble P in the form of $H_2PO_4^-$ and HPO_4^{-2} " (Joner *et al*, 2000) Carbon dioxide produced during aerobic respiration may also affect P-dissolution follow reaction 2 and 3

 $CO_{2} + H_{2}O - - - *HCO_{3} + H^{+} (2)$ $Ca_{3}(PO_{4})_{2} + HCO_{3} - - > 3 Ca(HCO_{3})_{2} + 2 PO_{4}^{3} - (3)$

Those reactions took place in plant rhizosphere and released P is in excess than its necessary for bacterial growth (Rao, 1982).

Most of soil composed of more of organic-P than that of inorganic-P. Mineralization of organic-P executed by a complex of phosphatase enzyme that has capacity to hydrolyze ester phosphate and found both and intra-and extracelluler. Most of this enzyme is produced when the soil contain less of soluble phosphorous. Phosphatase is produced by microorganism and plant, but dominantly by microorganism. Tabataibai (1982) proposed 5 group of enzymes belonged to phosphatase: Phosphomonoesterase include Phytase, glycerin phosphatase, nucleotidase and sugar phosphatase. Phosphodiesterase such as nuclease and phospholipase. Phosphotriesterase. Poliphosphatase include ATPase and pirofostase inorganic. Phosphoamidase which breakdown phosphorous and nitrogen bound.

Phytic acids as the major component of soil organic-P hydrolyzed enzymaticaly by phosphomonoesterase especially phytase (Michael et al., 1994). Based on its optimum pH activity and substrate specificity phosphomonoesterase enzyme is grouped into acid and alkaline PME. Acid PME found in rhizosphere and plant tissue, in contrast alkaline PME only produced by microbes and soil animal. Fungi and bacteria produced both acid and alkaline PME (Joner et al., 2000). The activity of intracellular PME is higher in alkaline environment than that of neutral and acid. In contrast higher activity of extra-cellular PME is observed in acidic environment. Thereby activity of acid PME is high in acid soil and alkaline PME is high in alkaline environment.

The finding of phytin derivatives as well as as phytin itself in the soil organic fraction suggest that a breakdown of the inositol hexaphosphate take place. The enzyme phytase liberates phosphate from phytic acid or its calcium magnesium salt, phytin, with the accumulation of inositol.

Phytase activity is widespread and is enhanced by carbonaceus materials that increase the size of the microbial population. Species of Aspergillus, Penicillium, Rhizopus, Cunninghamella, Arthrobacter, and Bacillus can synthesize the enzyme (Rahmasyah et al., 2000). Yet, despite the great phytase potential, phytin is not readily metabolized in soil (Kpomblekou and Tabatabai, 1994). The hydrolyses apparently, is not limited by phytase producing capacity of microorganism, which is appreciable, but by the small amount of phytic acid in the soil solution. The fact that phytate-phosphorous is relatively unavailable to crop growing in acid soils where the substrate is bound into iron and aluminum complexes.

If the major reserves of P in humus were phytin and nucleic acids, it would seem that the later is the more active fraction in mobilization and immobilization reaction because phytin is relatively resistance to decay while nucleic acids are highly susceptible to microbial attack.

Attempt has been made to exploit microbiological phosphate release. When microorganism known as phosphobacteria is inoculated into soil or on the seeds of several crop plants, there allegedly is remarkable increase in yield and in P-content of the crop harvested.

Oxidation-Reduction Reaction

P like N, may exist in a number of oxidation states ranging from the -3 of Phosphine, PH3, to the oxidized state, +5, of orthophosphate (Kpomblekou and Tabatabai (1994). In contrast to nitrogen little attention has been given to the inorganic transformation of P, but there is some evidence for biologically catalyzed changes in the oxidation state of this element too (Willet, 1989).

Biological oxidation of reduced P compound was demonstrated by Alexander, (1961) who noted that phosphite added to soil disappear with a corresponding increase in the concentration of phosphate, reaction 5.

 $HPO_3" \longrightarrow HPCV^{-}$ (5)

The conversion is brought about microbiologically since the reaction is eliminated upon the addition of a biological inhibitor such as toluene. A number of heterothrophic bacteria, fungi, and actinomycetes utilize phospohite within the cell to organic phosphate compounds. Bacteria utilize phosphite as sole P source in culture media and oxidize the phosphite within the cell to organic phosphate compounds. Bacteria utilize Phosphate in preference to phosphite so that, in media containing both anions, the former disappears first. There is no evidence that the oxidation is capable of providing energy for the development of chemoautothrophic bacteria.

The possibility of the reverse process, a reductive pathway, has received somewhat more When a soil sample is incubated attention. anaerobically in a mannitol-NH₄H₂PO4 medium, the phosphate disappears rapidly. This decrease is not a result of assimilation, which can only account for a small proportion of the loss. Phosphate apparently is reduced to phosphite and hypophosphite, and phosphine may possibly be evolved in the transformation (Eivazi and Tabatabai, 1977).

H3PO4 — 2H—> H_3PO_4 —2H---> H_3PO_2 "-> 4 H "^ PH₃ (2)

In the presence of nitrate or sulfate, phosphate reduction is retarded since the nitrate and sulfate seems to be more readily utilized as electron acceptors. More over, pure culture of *Clostridium butyricum* and *Escherichia coli* form

phosphite and hypophosphite from orthophosphate (Rao, 1982). The process seems analogous biochemically to denitrification or to bacterial conversion of sulfate to sulfide. It is unlikely that in well-aerated the reduction takes place environments. The mineralization and immobilization of P are related to the analogous reaction of N (Dick and Tabatabai, 1987). As a rule, P release is more rapid under condition favoring ammonification (Tisdale et al., 1985). Thus, highly significant correlation is observed between the rate of N and P conversion to inorganic form, the nitrogen mineralized being from 8 to 15 times amount of P made available. There is also correlation between and Ρ mineralization, a ratio of C:N:P mineralized microbiologically at the equilibrium condition is similar to the ratios of these there element in humus (Garcia-Gil et al., 2000).

ACKNOWLEGMENT

We would to express our sincerely gratitude to JICA for research grant and management staff of Gunung Halimun National Park for good research collaboration.

REFERENCES

- Alexander M. 1961. Introduction to Soil Microbiology. John Wiley and Sons, Inc. Him 169.
- Atlas RM and Bartha R. 1993. Microbial Ecology, Fundamentals and Applications. Addition Wesley, Reading, him 563.
- Bora IP and Bezbaruah B. 1999. Rock Phosphate Solubilizing Bacteria from Tea (*Camellia sinensis*) Soil and Their response to Certain Organophosphorus Pesticides. *Tropical Ecology* 40 (1), 157-161.
- **Brady NC. 1990.** The Nature and Properties of Soil. 10th ed. MacMillan, New York.
- **Cappucino JG and Sherman N. 1983.** *Microbiology a Laboratory Manual.* Addison-Wesley, New York.
- Cosgrove DJ. 1967. Metabolism of Organic Phosphatase in Soil. J. SoilBiol. 1,216-228.
- Dick WA, Cheng L and Wang Pk 2000. Soil Acid

and Alkaline Phosphatase Activity as pH Adjusment Indicators. *J. Bio. Biochem.* 32, 1915-1919.

- Dick RP and Tabatabai MA. 1986. Polyphosphatases are source of phosphorous for plant. *Pert. Res.* 12, 107-108.
- Dick WA and Tabatabai MA. 1984. Kinetic parameter of Phosphate in Soil and Organic Waste Materials. *Soil Sci.* 137,7-15.
- Eivazi E and Tabatabai MA. 1977. Phosphate in Soil. SoilBiol. Biochem. 9, 167-172.
- Garcia-Gil JC, Plaza C, Soler-Rovira P and Polo A. 2000. Long-term Effects of Municipal Soilid Waste Compost Application on Soil Enzyme Activities and Microbial Biomass. *Soil Biol & Biochem* 32, 1907-1913.
- Goto S, Iwasaki H and Okuma Y. 1987. New species belonging to the genera *Pichia* and *Candida. J. Gen. Appl. Microbiol.*, 33, 275-286.
- Gupta SR and Malik V. 1996. Soil Ecology and Sustainability. J. Tropical. Ecology. 37 (1), 43-55.
- Joner EJIM, Arle IM and Vosatka. 2000. Phosphate Activity of Extraradical Arbuscular Mychorrhyzal Hyphae. J. Biol. Biochem. 226, 199-207.
- Kimmins JP. 1989. Forest Ecology. Macmillan, New York.
- Kirsop BE and Doyle A. 1991. Maintenance of Microorganism and Cultured cells. A manual of Laboratory methods. Academic, him 75.
- **Kpomblekou K and Tabatabai M. 1994.** Effect of Organic Acids on Release of Phosphorus from Phosphate Rock. *Soil Science*. **158**, 442-449.
- Mengel K and Kirby EA. 1979. Principles of Plant Nutrient. International Potash Inst. Switzerland.
- Michael L, Bishop A, Chang C and Lee RWK. 1994. Enzymatic Mineralization of Organic Phosphorus in A Volcanic Soil in Chile. *Soil Science* 157 (4), 238-241.

- Miller GL. 1959. Use of Dinitrosalicyclic Acid Reagent for Determination of Reducing sugar. Anal. Chem. 31,426-428.
- Rahmasyah M, Sudiana MI and Imamudin H. 2000. Microbial and Enzymatic Activities in Gunung Halimun Forest Soil. Jurnal Biologi Indonesia 7,314-320.
- Rao, S. 1982. *Biofertilizers in Agriculture*. Oxford & IBH, New Delhi.
- Rodina AG. 1972. *Methods in Aquatic Microbiology*. Rita R. Colwell and Michael S. Zambruski (Eds). University Park, Baltimore, Butterworths, London.
- Ruiz RG, Hernandez I, Lucena J and Niell FX.. 2000. Significance of Phosphomonoesterase Activity in the Regeneration of Phosphorus in a meso-eutrophic, P-Limited Reservoir. J. *Bio. Biochem.* 32, 1953-1964.
- Schinner F, Oninger R, Kandeler, E and Margesin R. 1996. Methods in Soil Biology. Springer-Verlag, Berlin Heidelberg-Jerman
- Rodina. A.G. 1972. *Methods in Aquatic Microbiology*. Terjemahan Rita R.Colwell and Michael S. Zambruski. University Park Press, Baltimore Butterworths, London.
- Tabatabai MA. 1972. Phosphates in Soil. J. Soil Biol & Biochem. 9,167-172.
- Tabatabai MA. 1982. Soil Enzymes: Methods of Soil Analysis, Madison, Winconsin
- Takashima M, Sung-oi and Nakase T. 1995. Bensingtonia musae sp. Nov. isolates from a dead leaf of Musa paradisiaca and its phylogenetic relationshop among basidiomycetous yeasts. J. Gen. Appl. Microbiol 41, 143-151.
- **Tisdale SL, Nelson WL and Beaton JD. 1985.** Soil Fertility and Fertilizer. 4th ed. MacMillan, New York. Him. 45-47.
- Willet IR. 1989. Causes and prediction of changes in extractable phosphorus during flooding. *Austr. J. Soil Res.* 27, 45-54.